
www.manaraa.com

University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

4-2015

Reflective, Deliberative Agent-Based Information
Gathering
Adam D. Eck
University of Nebraska - Lincoln, aeck@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Artificial Intelligence and Robotics Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Eck, Adam D., "Reflective, Deliberative Agent-Based Information Gathering" (2015). Computer Science and Engineering: Theses,
Dissertations, and Student Research. 89.
http://digitalcommons.unl.edu/computerscidiss/89

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/89?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

REFLECTIVE, DELIBERATIVE AGENT-BASED INFORMATION GATHERING

by

Adam Dewane Eck

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professor Leen-Kiat Soh

Lincoln, Nebraska

April, 2015

www.manaraa.com

REFLECTIVE, DELIBERATIVE AGENT-BASED INFORMATION GATHERING

Adam Dewane Eck, Ph.D.

University of Nebraska, 2015

Advisor: Leen-Kiat Soh

As computational devices and entities become further established as routine,

omnipresent components of our everyday lives (e.g., wearable sensors, smart homes,

cyber-physical systems, embodied agents, human-robot interactions), such systems face

an increased pressure to perpetually understand the complex, noisy, uncertain world

around them in real-time. This environmental knowledge enables computational systems

to intelligently decide how to best behave in response to the current situation, adapt to the

ever-changing conditions of the dynamic world, and accomplish system goals that

ultimately aim to improve our daily experience. However, achieving and maintaining

such knowledge is very complicated due to the complexities and challenging properties

of real-world environments.

In this research, we study how to improve environment knowledge in intelligent

agents and multiagent systems through reflective, deliberative information gathering. By

being deliberative, an agent intentionally and selectively chooses how to gather

information. By being reflective, an agent can self-evaluate its informational needs and

performance in order to understand its needs and past sensing outcomes to best guide

deliberative information gathering, as well as adapt and learn in an uncertain

environment.

www.manaraa.com

Within reflective, deliberative information gathering, this dissertation addresses

two key problems: (1) the Analysis Problem, whereby an agent must determine how to

measure and balance sensing benefits and costs in order to reflect and improve

deliberative information gathering, (2) the Information Sharing Problem, whereby

multiple agents must determine how to cooperatively sense together and share

information to update collective beliefs.

For the Analysis Problem, we propose two improvements to a popular framework

for reasoning under uncertainty—partially observable Markov decision processes

(POMDPs): (1) Potential-based Reward Shaping (PBRS) providing metareasoning about

information gathering within time-constrained planning, and (2) Difference-based

Heuristic Selection (DHS) with Long Sequence Entropy Minimization (LSEM) for

situationally-aware planning capable of balancing knowledge improvement and costs

minimization. For the Information Sharing Problem, we propose two solutions for

improving large team information sharing observing localized, non-stationary

phenomena: (3) cooperative change detection and response and (4) forgetting-based

adaptation of information sharing. We also propose: (5) a learning-based approach for ad

hoc information gathering that enables agents to learn how to share information without

requiring pre-coordination.

www.manaraa.com

iv

DEDICATION

To Sophia: Never stop reaching for your dreams.

www.manaraa.com

v

ACKNOWLEDGEMENTS

I would like to thank those who have assisted with the creation of this

dissertation. First, I am very grateful for my advisor Dr. Leen-Kiat Soh, whose guidance,

mentoring, thought provoking discussions, meaningful feedback, and careful review have

helped me to grow as a researcher, a scholar, and a person. Second, I appreciate the help

of my committee members Dr. Stephen Scott, Dr. Ashok Samal, Dr. Steven Dunbar, and

Dr. Milind Tambe for their willingness to assist with my research and thoughtful review

of my work. Third, I thank my colleagues for the many discussions and critiques that

have improved my research, especially L.D. Miller and Nobel Khandaker. Fourth, I

acknowledge the resources available at the University of Nebraska used to complete my

research, including the Holland Computing Center.

Further, I am forever indebted to my wonderful wife Liz, whose love, support,

patience, and sacrifice have allowed me to reach for my dreams. Finally, I thank God for

the many blessings in my life and for the gifts He has bestowed upon me. Without either,

this research would not be possible.

www.manaraa.com

vi

GRANT INFORMATION

This research has been supported by a NSF Graduate Research Fellowship (DGE-

054850), a U.S. Department of Education GAANN Fellowship (P200A040150), as well

as grants from the NSF (DBI-0743783, DEB-0953766, SBES-1228937, SES-1132015),

and has been partially completed utilizing the Holland Computing Center of the

University of Nebraska.

www.manaraa.com

vii

CHAPTER 1 INTRODUCTION .. 1

1.1. Reflective, Deliberative Information Gathering.. 3

1.2. Initial Research .. 5

1.3. Dissertation Problems .. 8

1.4. Solutions to Dissertation Problems ... 11

1.5. Dissertation Contributions .. 15

1.6. Dissertation Outline ... 17

CHAPTER 2 BACKGROUND AND RELATED WORK ... 18

2.1. Deliberative Information Gathering .. 18

2.2. Deliberative Information Gathering with Active Sensing POMDPs 22

2.2.1. Markov Decision Process ... 23

2.2.2. Partially Observable Markov Decision Process ... 23

2.2.3. Active Sensing POMDP .. 26

2.2.4. Applications of the Active Sensing POMDP ... 27

2.3. Reflective Information Gathering .. 30

2.3.1. Reflection for Deliberative Information Gathering .. 30

2.3.2. Reflection for the Active Sensing POMDP ... 33

2.4. Multiagent Information Gathering with Limited Sensors ... 36

2.5. Comparison of our Research to Prior Work ... 38

CHAPTER 3 POTENTIAL-BASED REWARD SHAPING FOR POMDPS (SOLUTION 1

TO THE ANALYSIS PROBLEM) ... 42

3.1. Introduction .. 43

3.2. Background .. 50

3.2.1. Online POMDP Planning ... 50

3.2.2. Potential-Based Reward Shaping ... 54

3.3. Potential-Based POMDP Planning ... 58

3.3.1. Extending PBRS to Online POMDP Planning ... 58

3.3.2. Impact of PBRS on Online Planning ... 70

3.4. Experimental Setup ... 78

3.4.1. Benchmark Problems .. 81

3.4.1.1. Tag ... 81

www.manaraa.com

viii

3.4.1.2. RockSample ... 82

3.4.1.3. AUVNavigation ... 85

3.5. Results ... 87

3.5.1. Tag Results .. 90

3.5.1.1. Comparison of Full Breadth Planning With and Without Reward Shaping 90

3.5.1.2. Comparison Between Potential Function Types .. 92

3.5.1.3. Comparison of PBRS with Depth-Focused, State-of-the-Art Planning Algorithms 93

3.5.2. RockSample Results .. 95

3.5.2.1. Comparison of Full Breadth Planning With and Without Reward Shaping 95

3.5.2.2. Comparison Between Potential Function Types .. 96

3.5.2.3. Comparison of PBRS with Depth-Focused, State-of-the-Art Planning Algorithms 98

3.5.3. AUVNavigation Results .. 99

3.5.3.1. Comparison of Full Breadth Planning With and Without Reward Shaping 99

3.5.3.2. Comparison Between Potential Function Types .. 102

3.5.3.3. Comparison of PBRS with Depth-Focused, State-of-the-Art Planning Algorithms 103

3.5.4. Discussion ... 106

3.6. Conclusions and Future Work .. 114

CHAPTER 4 SITUATIONALLY-AWARE ONLINE HEURISTIC PLANNING FOR

HIGHLY UNCERTAIN ENVIRONMENTS (SOLUTION 2 TO THE ANALYSIS

PROBLEM) .. 117

4.1. Introduction .. 118

4.2. Background .. 123

4.2.1. Online POMDP Planning ... 123

4.2.2. Heuristic Search Algorithms for Online POMDP Planning ... 127

4.3. Problem ... 132

4.4. Solution Approach ... 136

4.4.1. Planning Stages .. 137

4.4.2. LSEM Heuristic ... 139

4.4.3. DHS Situational-Awareness .. 142

4.4.4. Theoretical Analysis .. 148

4.5. Experimental Setup ... 153

4.6. Results ... 160

4.6.1. AUVNavigation Results .. 160

www.manaraa.com

ix

4.6.2. Tag Results .. 164

4.6.3. RockSample Results .. 167

4.6.4. Discussion ... 168

4.7. Conclusions ... 170

CHAPTER 5 INTELLIGENT INFORMATION SHARING WITH LOCALIZED, NON-

STATIONARY PHENOMENA (SOLUTIONS 1 AND 2 TO THE INFORMATION

SHARING PROBLEM) .. 173

5.1. Introduction .. 174

5.2. LTIS .. 176

5.2.1. LTIS Model.. 176

5.2.2. Prior LTIS Research ... 178

5.3. Non-Stationary Phenomena .. 180

5.3.1. Modeling Non-Stationarity in LTIS... 180

5.3.2. Analyzing the Effect of Non-Stationarity .. 181

5.4. Change Detection and Response ... 185

5.5. Forgetting Outdated Beliefs .. 188

5.6. Experimental Setup ... 192

5.7. Results ... 194

5.8. Conclusions ... 200

CHAPTER 6 AD HOC INFORMATION GATHERING (SOLUTION 3 TO THE

INFORMATION SHARING PROBLEM) .. 201

6.1. Introduction .. 201

6.2. Problem ... 205

6.2.1. AHIG Formulation .. 205

6.2.2. Related Work ... 208

6.3. POMDP Formulation .. 209

6.3.1. AHIG as a POMDP .. 210

6.3.2. Problems with POMDP Formulation ... 212

6.4. Knowledge State MDP ... 214

6.4.1. Incorporating Shared Information .. 214

6.4.2. Knowledge State MDP Transformation .. 215

6.4.3. Learning Knowledge State Dynamics ... 218

www.manaraa.com

x

6.5. Experimental Setup ... 221

6.6. Results ... 223

6.7. Conclusions ... 226

CHAPTER 7 CONCLUSIONS AND FUTURE WORK .. 228

7.1. Summary ... 228

7.2. Future Work ... 232

7.3. Contributions.. 234

REFERENCES ... 235

www.manaraa.com

xi

TABLE OF FIGURES

Figure 1.1: Summary of Research .. 11

Figure 2.1: Comparison to Prior Reflective, Deliberative Information Gathering Research

within the Analysis Problem ... 38

Figure 2.2: Comparison to Prior Multiagent Information Gathering Research within the

Information Sharing Problem .. 40

Figure 2.3: Comparison to Prior Research on Resource Usage during Information

Gathering within the Environment Impact Problem ... 41

Figure 3.1: Performance of Planning Algorithms as Planning Time Increased on the Tag

Benchmark Problem for Select Approaches ... 94

Figure 3.2: Performance of Planning Algorithms as Planning Time Increased on the

RockSample Benchmark Problem for Select Approaches ... 98

Figure 3.3: Performance of Planning Algorithms as Planning Time Increased on the

AUVNavigation Benchmark Problem for Select Approaches 104

Figure 3.4: Proportion of AUVNavigation Runs Successfully Ending at a Goal Location as

Planning Time Increased for Select Approaches .. 104

Figure 4.1: (a) Example 𝝅 Tree with Two Actions and Two Observations with Depth 1, (b)

Example Path with Depth 𝒏 .. 125

Figure 4.2: Stages of Planning in Highly Uncertain Environments 138

Figure 5.1: Agent Belief Updates .. 182

Figure 5.2: Impact of Non-Stationarity.. 184

Figure 5.3: Example of Performing Belief Decay (a) Only Upon Receipt of Information vs.

(b) Every Tick ... 191

Figure 5.4: Impact of Malicious/Faulty Agents under Periodic Sequences of Phenomenon

Values .. 198

Figure 5.5: Impact of Malicious/Faulty Agents under Random Sequences of Phenomenon

Values .. 198

Figure 6.1: Average Belief Certainty.. 224

Figure 6.2: Average Proportion of Correct Agents .. 224

Figure 6.3: Average Total Reward ... 226

Figure 7.1: Summary of Research .. 228

www.manaraa.com

xii

TABLE OF TABLES

Table 2.1: Related Deliberative Information Gathering Research ... 19

Table 2.2: Related Active Sensing POMDP Research .. 28

Table 2.3: Related Reflective Information Gathering Research ... 31

Table 2.4: Related Multiagent Information Sharing Research ... 36

Table 3.1: Types of Potential Functions for POMDPs ... 60

Table 3.2: Summary of Potential Functions Used in Each Benchmark Problem 80

Table 3.3: Results from Tag Benchmark Problem with 95% Confidence Intervals 90

Table 3.4: Results from RockSample Benchmark Problem with 95% Confidence Intervals

 ... 95

Table 3.5: Results from AUVNavigation Benchmark Problem with 95% Confidence

Intervals .. 100

Table 3.6: Proportion of AUVNavigation Runs Successfully Ending at a Goal Location with

95% Confidence Intervals ... 102

Table 4.1: Results on AUVNavigation Benchmark with 95% Confidence Intervals 161

Table 4.2: Results on Tag Benchmark with 95% Confidence Intervals 164

Table 4.3: Results on RockSample Benchmark with 95% Confidence Intervals 167

Table 5.1: Comparison of Solutions with Different Phenomenon and Networks with 95%

Confidence Intervals .. 195

Table 6.1: POMDP Formulation of AHIG Problem ... 211

Table 6.2: Knowledge State MDP Formulation .. 217

www.manaraa.com

1

CHAPTER 1 INTRODUCTION

Many real-world applications of computer systems benefit from the use of

artificial intelligence (AI) and multiagent systems (MAS). For example, intelligent

agents have found wide-ranging uses from intelligent tutoring systems and collaborative

learning environments in education (e.g., D’Mello & Graesser, 2012; Khandaker et al.,

2011) to mixed-initiative systems supporting human users with routine tasks (e.g.,

Chalupsky et al., 2001; Myers et al., 2007; Yorke-Smith et al., 2009) to search and

rescue robots that help discover human victims after disasters (e.g., Casper & Murphy,

2003; Calisi et al., 2007).

In particular, an intelligent agent is a unit situated in a specified environment

capable of autonomously (1) sensing its environment to gather information about its

current situation, (2) using this information to decide how to behave in the environment

(e.g., based on internal goals), and (3) taking action to change the environment according

to its decisions in order to complete tasks. Through intelligence, hardware or software

agents provide features such as reactivity to changing environments, proactive behavior

aimed to accomplish goals, learning to improve performance over time, and social

behavior to work together to solve complex problems (Wooldridge, 1999). Together,

these features enable a system to achieve valuable properties such as reliability,

scalability, robustness, consistency, efficiency, and effectiveness.

Achieving these benefits requires an agent to consistently make correct decisions

appropriate to its current situation. However, the quality of an agent’s decision making

depends on the information gathered by the agent from its environment through sensing:

without good information, even a rational agent could make wrong decisions and thus fail

www.manaraa.com

2

to accomplish its goals and complete its tasks. Unfortunately, proper sensing is made

especially difficult due to challenging properties of environments common to many real-

world applications of intelligent agents, including noise, partial observability, non-

stationarity, and limited resources.

For example, in a search and rescue robotics application, individual robots could

be responsible for autonomously navigating a physical space to discover trapped victims

in need of assistance within collapsed buildings after a powerful earthquake. These

robotic agents must be able to gather high quality information during sensing in order to

know how to navigate through the space and identify all victims so that they can be freed

from the rubble. However, the quality of information gathered during sensing by these

robots is negatively influenced by their environment. For instance, smoldering fires

might resemble the heat signature of a person to an agent’s infrared sensor, returning

noisy, inaccurate information to the agent. Additionally, the agents’ sensors can only

view a limited portion of the disaster area at once, so the environment is only partially

observable (with portions of the true state of the environment hidden from the agent at

any particular point in time). Furthermore, the environment can change while each agent

is sensing (e.g., new buildings collapse), causing the prior information collected by

agents to become outdated and in need of refresh to maintain accurate, up-to-date beliefs.

Finally, the robots are powered by battery supplies and must therefore be careful when

consuming limited energy to maximize the amount of area covered and/or their

operational time in order to find the most victims. Given that there are also multiple

agents (i.e., robots) operating in the same environment, their actions can also work

against one another, making sensing even more difficult. For instance, robots might

www.manaraa.com

3

move in front of each other’s sensors, adding noise to the resulting information gathered.

Likewise, agents can otherwise change the environment (e.g., creating extra rubble by

running into obstacles), making the environment even more non-stationary and requiring

more sensing to maintain up-to-date beliefs.

Given the challenges of sensing in complex environments, special care must be

taken to make sure that agents appropriately sense to gather information with sufficient

quality and quantity to inform their decisions, achieve goals, and complete tasks. We

next outline our research vision to address this necessity.

1.1. Reflective, Deliberative Information Gathering

To improve agent sensing in order to benefit agent reasoning and actuation, as

well as overall system performance, this research focuses on reflective, deliberative

information gathering
1
 by intelligent agents. By being deliberative, an agent

intentionally and selectively chooses how to gather information, as opposed to

considering sensing as a secondary behavior, which could instead potentially lead to

suboptimal information gathering in complex environments. By being reflective, an

agent self-evaluates its informational needs and performance in order to understand its

needs and past sensing outcomes to best guide deliberative information gathering, as well

as adapt and learn as it faces new decisions in an uncertain environment. Together, these

qualities enable an intelligent agent to carefully consider its current knowledge, the

knowledge required of its decisions, and the state of its environment in order to know

1
 By “information gathering”, we mean both the gathering of raw data/observations from the environment,

as well as the transformation of such data into information useful for the agent’s reasoning. We use the

terms “sensing” and “information gathering” interchangeably throughout this dissertation.

www.manaraa.com

4

how, when, and where to sense so that it improves the way it gathers the necessary

information for its reasoning in an efficient and effective manner.

In contrast, a non-deliberative (i.e., passive) information gathering agent would

focus its reasoning solely on completing tasks and not explicitly think about how to act to

perform good sensing now with the hope of potentially later benefitting its tasks. For

instance, a search and rescue robot that pre-computes a path to take through the disaster

area and does not periodically adjust its movement or sensor positioning would be a non-

deliberative information gathering agent. Furthermore, a non-reflective yet deliberative

information gathering agent would not self-evaluate its sensing performance or learn over

time how to improve its sensing from past experience. For instance, a non-reflective

search and rescue robot might not recognize that continually adjusting its vision camera

isn’t helping it find new victims due to a lack of ambient light in the collapsed building,

and thus the agent would not switch to focus its limited energy resources on more

effective infrared sensing in order to better find victims.

Overall, this research both (1) extends classical metareasoning (e.g., Cox & Raja,

2011; Raja & Lesser, 2007; Zilberstein, 2008) from decisions about reasoning control to

decisions about sensing control which benefits both sensing and the agent’s task-level

decisions, and (2) extends prior research on deliberative information gathering,

sometimes called active sensing/perception (e.g., Weyns, Steegmans, & Holvoet, 2004),

to be more introspective about agent performance and needs in order to encourage

improved adaptation over time.

For instance, in our search and rescue running example, a robotic agent should

deliberatively manage its sensors to maintain high quality sensing while moving through

www.manaraa.com

5

the complex environment terrain. This could include frequently re-aiming its visual

camera and infrared sensors to best scan for victims, as well as planning routes to

intentionally navigate through areas where the agent has the least knowledge of the

presence of victims. To determine how to best deliberatively sense over time, the agent

should reflect on what it already knows about the complex environment, as well as the

potential benefits of different types of actions (e.g., choosing to enter a room, pointing its

camera in a different direction) and the costs of these actions (e.g., consumed battery

power, wasted time, possible noise which could corrupt its current knowledge).

Following such behavior, the robot should then be able to gather both higher quality

information (through choosing the best sensing actions) as well as a greater quantity of

information (by lasting longer in the environment before its battery expires). Together,

such information better informs the agent’s decisions and enables it to find the most

victims to rescue.

1.2. Initial Research

Our research on reflective, deliberative information gathering for intelligent

agents and multiagent systems was initially inspired by our earlier research (Eck, 2010)

studying the Environment Impact Problem:

Environment Impact Problem: How can an agent mitigate any changes

to its environment caused by sensing that have lasting impacts on both the

information gathered and the ability of the agent to accomplish its tasks in

order to avoid corrupting the environment?

In the Environment Impact Problem, actions taken by agents for the purpose of

sensing not only result in gathered information used to change the agent’s knowledge, but

these actions can also change the agent’s environment and affect its future behavior. In

www.manaraa.com

6

the Environment Impact Problem, we studied how an agent can reflect to anticipate these

changes to the environment and predict their consequences, and then determine how to

deliberatively act in order to mitigate or avoid problems caused by environment changes.

One type of environment change we have studied involves the use of stateful

resources by agents to gather information. As an agent interacts with a stateful resource,

the agent can change the state of the resource, causing dynamic (rather than fixed) costs

to the agent based on the state of the resource. Furthermore, the quality and quantity of

information gathered by a stateful resource depends on its current state, providing greater

accuracy or more information in some states than others. We call this effect the

Observer Effect of agent sensing. Overall, agents must be mindful of the internal state

of resources used during sensing (and how its actions change the state) in order to gather

the best information at the lowest cost, and we have studied solutions for both modeling

stateful resource behavior, as well as approaches for managing usage of such resources.

For example, in a mixed-initiative system application where an intelligent agent

works alongside a human user to support the user’s daily tasks (e.g., an office worker

scheduling meetings (Chalupsky et al., 2001; Myers et al., 2007; Yorke-Smith et al.,

2009) or a student learner performing educational assignments (D’Mello & Graesser,

2012; Khandaker et al., 2011)), the agent might need to interact directly with the human

user (a stateful resource) to gather information and understand the user’s preferences so

that it can best support the user and her tasks. Such interactions can interrupt and distract

the user from her current activities. If done at inopportune times, these interruptions can

disrupt the user’s cognitive processes (Mark, Gudith, & Klocke, 2008) and increase user

frustration (Adamczyk & Bailey, 2004) (the resource states), and cause the user to want

www.manaraa.com

7

to return quickly to her current activities or even quit using the system (Klein, Moon, &

Picard, 2002), altogether affecting the quality and quantity of information provided back

to the mixed-initiative agent. Properly managing human-agent interactions to gather

information in this example enables us to construct more efficient and effective agents, as

well as improve the end-user experience and productivity.

Alternatively, sensing actions taken by agents can also have permanent effects on

the environment. That is, an action can produce a change in the environment state that

could prevent the agent from ever gathering necessary information or achieving certain

tasks and goals. For instance, in our search and rescue example, if a robot chooses to

navigate through a dangerous hallway to search for victims, its movement through the

hallway could further weaken the structure of the building and collapse other paths,

preventing the robot from exploring nearby areas or rescuing other victims in the future.

Thus, current actions have an influence on the future abilities of the robot, including its

ability to gather information and/or accomplish its goals.

As part of studying reflective, deliberative information gathering, we have also

extended our Master’s thesis research on the Environment Impact Problem and the

Observer Effect (Eck, 2010) separate from this dissertation. First, we have enhanced the

formalization of the problem of modeling this effect. We have also improved our

POMDP-based solution framework for metacognitively managing agent sensing, which

allows the agent to reflect on the impacts of sensing actions with respect to changing both

stateful resources and the agent’s knowledge, then deliberatively choose sensing actions

expected to best improve the agent’s knowledge under the Observer Effect. This research

has been published in the Journal of Autonomous Agents and Multiagent Systems

www.manaraa.com

8

(JAAMAS) (Eck & Soh, 2013c). We have also improved our MineralMiner simulation

for studying environment impacts from sensing (including both the Observer Effect and

permanent effects on the environment), amongst many other environment properties that

make sensing a challenging activity. This research has been published in the Multiagent

and Grid-Based Systems (MAGS) journal (Eck & Soh, 2013b).

1.3. Dissertation Problems

To better understand both (1) how to produce reflective, deliberative information

gathering in intelligent agents, as well as (2) the benefits of this approach for agent-based

sensing, this dissertation focus on two core problems: the Analysis Problem, and the

Information Sharing Problem.

Analysis Problem: How should an agent measure or predict the benefits

and costs of performing various sensing actions with respect to gathering

information, then analyze the resulting tradeoff, in order to best guide its

deliberative sensing?

First, the Analysis Problem is at the core of reflective, deliberative sensing: an

agent must be able to measure and/or predict the benefits and costs of its actions with

respect to its current knowledge and informational needs in order to achieve reflective

sensing behavior. Within this problem, we study different methods for performing such

measurement and prediction at different levels of agent reasoning. We also study

different techniques and approaches for analyzing these measures and predictions in

order to best guide deliberative sensing and balance the tradeoffs between sensing

benefits and costs.

For instance, in our search and rescue running example, one possible useful

measure of sensing benefits is the improvement in the certainty of an agent’s beliefs after

www.manaraa.com

9

gathering new information. Since the location of victims is inherently uncertain, the

agent wants to know with high certainty whether a victim is nearby before moving on to

another room (lest it accidentally leave victims behind undiscovered). In contrast, the

agent might measure the costs of sensing based on the amount of time different sensing

actions take (e.g., slowly moving deeper into the room vs. quickly re-aiming its sensors),

as well as the limited battery energy required for each action (e.g., a low cost for forward

movement vs. a high cost for turning around). Then, analyzing this information, the agent

can deliberatively choose the action to continue its sensing that best balances benefits and

costs and boost its overall performance.

Information Sharing Problem: How can agents leverage multiagent

cooperation in order to share information when information gathering is

limited (e.g., agents have limited sensors or resources)?

Second, rather than looking at intelligent agents as isolated individuals

responsible for their own independent information gathering, we can also look at how

cooperative agents can help one another in the sensing process. By combining multiple

agents, we can achieve benefits such as increased coverage of the environment (when

individual agents suffer from a limited world view through partial observability), timelier

sensing (especially in dynamic, non-stationary environments), higher accuracy and faster

uncertainty reduction (by combining multiple viewpoints of the environment to avoid

noise), as well as better limited resource management.

Towards information sharing, in this research we study the dynamics of

information flow through multiple cooperative agents working together as they share

information, as well as solutions for (1) determining when and where each agent should

sense, (2) how agents should share information with their neighbors, (3) how to

incorporate shared information in agent beliefs, and (4) how to share or conserve limited

www.manaraa.com

10

resources for sensing between cooperative agents. As a team, agents can reflect together

on their collective knowledge and informational needs, as well as either cooperatively or

individually plan how to deliberatively sense in order to carry out team goals and achieve

better sensing as a group rather than as individual agents. In particular, we are interested

in environments where the sensing capabilities of agents are limited compared to the size

of the team of cooperative agents (e.g., only a few agents have sensors to directly observe

the environment). We are also interested in environments, called ad hoc environments,

where agents have no prior knowledge of each other or their peers’ capabilities and

willingness to cooperate, preventing pre-coordination of information sharing behavior.

For instance, in our search and rescue robotics example, a small group of robots

developed by different organizations could work together to canvas a damaged building

at once, and they belong to a larger team of agents (e.g., emergency responders,

dispatchers) that cannot otherwise observe the disaster area. These robots could

cooperatively compare their initial knowledge, and then decide how to divide up the area

for exploration in order to speed up identification of victims, as well as redundantly

overlap their sensing areas to provide additional information to increase overall certainty

after searching through the environment for victims. Agents could learn how to weight

their own observations versus how much they should trust shared information from their

teammates when updating their beliefs. Depending on the circumstances, the robots

might frequently communicate with each other to maintain up-to-date beliefs, or they

might conserve energy by communicating infrequently to maximize how long they can

operate in the environment.

www.manaraa.com

11

Figure 1.1: Summary of Research

1.4. Solutions to Dissertation Problems

Towards solving these two core problems—the Analysis Problem and the

Information Sharing Problem—and better understanding reflective, deliberative

information gathering, the research presented in this dissertation has accomplished the

following, summarized in Figure 1.1 and described in more detail below.

To address the Analysis Problem, we propose two novel approaches to reflecting

on the benefits and costs of sensing actions, then optimizing the resulting tradeoff within

a popular framework for agent reasoning (e.g., Boutilier, 2002; Doshi & Roy, 2008;

Spaan, Veiga, & Lima, 2010; Williams & Young, 2007): the partially observable

Markov Decision process (POMDP) (Kaelbling, Littman, & Cassandra, 1998). These

two solutions include: (1) potential-based reward shaping (PBRS) (Ng, Harada, &

Russell, 1999; Asmuth, Littman, & Zinkov, 2008) for POMDPs, and (2) difference-based

www.manaraa.com

12

heuristic selection (DHS) with the long sequence entropy minimization (LSEM) heuristic

for situationally-aware heuristic search-based online planning.

First, our PBRS for POMDPs solution is an approach to embed additional

measures reflecting action benefits and costs (including with respect to sensing) in reward

optimization by agents to produce agent behavior that best addresses the tradeoff between

benefits and costs to improve overall agent behavior. Unlike past attempts to include

similar information to guide action selection in POMDPs (e.g., Mihaylova et al., 2002;

Araya-Lopez et al., 2010), our approach offers important theoretical guarantees on agent

performance. As an additional benefit, this approach also generalizes to a solution for

improving agent planning in devices with constrained computational resources (e.g.,

wireless sensors, robots) by guiding the agent towards large rewards beyond the myopic

planning (i.e., limited number of planning steps) caused by a lack of computational

power. It also represents a novel technique for adding metareasoning to agent reasoning

with POMDPs without increasing the size of the agent’s state space (and thus does not

increase the computational complexity of the reasoning process). Overall, PBRS both

addresses the Analysis Problem studied in this dissertation, as well as offers broader

impacts for agent reasoning in general. This research has been published both as an

extended abstract (Eck et al., 2013) at AAMAS 2013 and more recently as an article in

JAAMAS (Eck et al., 2015). This solution will be discussed in greater detail in Chapter

3 of this dissertation.

Second, DHS + LSEM represents a novel heuristic search algorithm for online

planning in POMDPs. In particular, the LSEM heuristic guides agent planning towards

policies (i.e., action plans) that quickly gather the necessary information to operate in

www.manaraa.com

13

highly uncertain environments (such as those commonly found in real-world applications

of multiagent systems). It does so by reflecting on the expected certainty in agent

knowledge (a measure of sensing benefit, directly addressing the high uncertainty in the

domain) after taking an action in order to determine which action sequences to consider

during planning and find a good policy. This work differs from our PBRS solution in

that LSEM reflects on sensing benefits when choosing how to search through the policy

space while planning, whereas PBRS reflects on sensing benefits during the choice of

sensing action to take during execution of plans (and thus at a different level of agent

reasoning). Additionally, DHS provides situationally-aware planning that enables the

agent to select between different heuristics measuring different types of information

when choosing how to expand planning during plan construction. As such, DHS enables

the agent to consider both the benefits of sensing (revealed through LSEM) with other

heuristics (reflecting sensing costs) to quickly find approximately optimal policies.

Altogether, DHS + LSEM can find good policies two orders of magnitude faster than the

best previously reported heuristic search online POMDP planning algorithms. This

research was published as a full paper at the AAMAS 2014 conference (Eck & Soh,

2014b) and will be discussed in greater detail in Chapter 4 of this dissertation.

Third, to address the Information Sharing Problem, we first focus on challenging

domains with localized phenomenon observed by only a small subset of the agents within

a large cooperative team (e.g., observing individual users of a large mixed initiative

software system), requiring large team information sharing (LTIS) (Glinton, Scerri, &

Sycara, 2009, 2010, 2011; Pryymak, Rogers, & Jennings, 2012) to achieve and maintain

consistent and accurate shared beliefs. We produce solutions to overcome a challenging

www.manaraa.com

14

problem caused by environment non-stationarity: the institutional memory problem

where large portions of the team of agents become stuck with outdated beliefs as the

environment changes (e.g., newly collapsed buildings, changing user preferences or

goals), no matter how much additional information enters the team through additional

sensing. In particular, we develop two algorithms for mitigating this problem: (1) a

change detection and response algorithm where agents work together within local sub-

teams to quickly detect changes to the observed phenomenon, and (2) a forgetting-based

algorithm, where agents independently use belief decay to maintain up-to-date beliefs to

avoid problems caused by faulty agents or malicious information. Both solutions

successfully avoid the institutional memory problem and lead to consistent, accurate

beliefs through the team as the environment changes. This research has been published

as an extended abstract at AAMAS 2013 (Eck & Soh, 2013a) and as a full paper with the

WEIN workshop at AAMAS 2014 (Eck & Soh, 2014a). This work will be discussed in

greater detail in Chapter 5 of this dissertation.

Fourth, to further address the Information Sharing Problem, we also focus on ad

hoc environments where agents can either sense on their own or share information with

peers, except the agents have no advance knowledge of their peers’ capabilities and

willingness to work together. Thus, agents cannot pre-coordinate their joint behavior in

advance, and instead must learn both when to work together (through sharing) and when

to work independently (through sensing with the agent’s own sensors) in order best

update agent knowledge over time. We propose a solution called the Knowledge State

MDP where agents individually learn the benefits of relying on each type of source to

maximize knowledge improvement. This research was accepted for publication as a full

www.manaraa.com

15

paper at the AAMAS 2015 conference (Eck & Soh, 2015) and will be discussed in

greater detail in Chapter 6 of this dissertation.

1.5. Dissertation Contributions

The research for this dissertation has made several important contributions to the

fields of artificial intelligence and multiagent systems, including:

1. A better fundamental understanding of agent-based sensing in complex

environments, valuable for a wide range of intelligent agents and

multiagent systems domains. This knowledge can be applied to improve

agent reasoning and actuation in different applications, as well as

improves our overall understanding of general artificial intelligence.

2. A set of solutions to provide reflective, deliberative information gathering

to improve agent-based sensing, including single-agent POMDP solutions

and cooperative agent team-based solutions.

3. New techniques for metareasoning by intelligent agents with broader

impacts beyond sensing control.

4. Implemented simulation environments mimicking real-world scenarios

and applications for studying agent-based sensing.

5. The addition of implementations of many of our solutions to a Java library

for artificial intelligence that can be reused for other AI and agent-based

projects.

First, from a fundamental research perspective, the dissertation both (1) explores

difficult aspects of agent-based sensing in complex environments in order to improve our

scientific understanding of the relationship between information gathering and agent

reasoning and actuation, as well as (2) produces general-purpose, domain-independent

solutions that can be used to engineer agent-based sensing systems in a wide range of

domains and real-world applications of intelligent agents and multiagent systems. For

example, this research could be applied to applications in autonomic computing;

computer supported, collaborative learning; cyber-physical systems; mixed-initiative

www.manaraa.com

16

systems; robotics; survey systems; ubiquitous and pervasive computing; and wireless

sensor networks.

Second, from a broader impacts perspective, the dissertation includes solutions

that not only improve agent sensing through reflection and deliberation, but can also

improve other aspects of agent reasoning. Specifically, our PBRS for POMDPs solution

represents a general-purpose approach to adding metareasoning to the popular POMDP

agent reasoning framework. This solution allows not only reflections on the benefits and

costs of agent sensing to be used to guide action selection, but any measure of benefits

and costs across any agent goal. Chapter 3 details some other types of measures that the

agent can use to reflect on its overall needs and future expectations to improve reward

maximization in complex environments. Additionally, our DHS heuristic selection

approach to improve online POMDP planning can work with any set of heuristics, not

just those maximizing uncertainty reduction to improve agent sensing (e.g., LSEM).

Finally, from a software perspective, the research for this dissertation has resulted

in two types of products. First, this research has produced and enhanced simulation

environments for evaluating agent-based sensing, including the simulations for large

team information sharing and ad hoc information gathering, as well the implementation

of many popular POMDP benchmark problems in a unified framework and programming

language (Java). Second, combined with the other research activities of the authors, this

research has also contributed implementations of our solutions to a Java-based library for

general artificial intelligence techniques called IAMAS (which we intend to release as

open source software for general, free availability to other programmers and researchers).

www.manaraa.com

17

1.6. Dissertation Outline

The rest of this dissertation is organized as follows. First, in Chapter 2, we

discuss prior work within the agent-based sensing literature in order to frame our research

on reflective, deliberative information gathering in the context of the state-of-the-art. We

also provide some general background on concepts and techniques used throughout the

dissertation. Next, we describe our two solutions for the Analysis Problem in Chapters 3

and 4, respectively: (1) PBRS for POMDPs and (2) the DHS + LSEM heuristic search

algorithm for online POMDP planning. Then, in Chapter 5, we detail our research on the

institutional memory subproblem of the Information Sharing Problem with solutions.

Afterwards, in Chapter 6, we detail our learning-based Knowledge State MDP solution to

ad hoc information gathering subproblem of the Information Sharing Problem. In each of

these four solution chapters, we also present experimental studies used to evaluate our

solutions, as well as investigate the benefits of reflective, deliberative information

gathering in agent-based sensing. Please note that these four chapters are each based on

our prior publications (aforementioned in Section 1.3). Finally, we conclude in Chapter 7

by summarizing our dissertation research, as well as we outline future work we intend to

continue.

www.manaraa.com

18

CHAPTER 2 BACKGROUND AND RELATED WORK

In this chapter, we describe related research from the intelligent agents and

multiagent systems literature to our overall focus of reflective, deliberative information

gathering. First, we introduce some general work on deliberative information gathering

in Section 2.1. Next, in Section 2.2, we detail more specific work using active sensing

POMDPs for deliberative information gathering, which is closely related to our PBRS for

POMDPs and DHS + LSEM solution approaches presented in Chapters 3 and 4,

respectively, as well as our Knowledge State MDP solution in Chapter 6. Then, we

describe prior work that initially added reflectiveness to deliberative information

gathering in Section 2.3. Afterwards, we discuss related work from the multiagent

sensing literature in Section 2.4. Finally, in Section 2.5, we conclude by discussing how

our research on reflective, deliberative information gathering (both from this dissertation

and our prior work on the Environment Impact Problem) fits within the context of the

state-of-the-art introduced in this chapter.

Along the way, we also introduce some background, including an overview of

MDPs and POMDPs in Section 2.2.1-2.2.2, which is relevant to both the related work in

Section 2.2, as well as our solutions in Chapters 3, 4, and 6. Background or related work

only relevant to specific parts of our research will be introduced later in the appropriate

chapters.

2.1. Deliberative Information Gathering

Although the vast majority of intelligent agents and multiagent systems research

focuses primarily on the reasoning and actuation components of agent behavior (and thus

generally relegates sensing to a by-product of other agent activities), research focusing on

www.manaraa.com

19

Table 2.1: Related Deliberative Information Gathering Research

Reference Contributions

(Bajcsy, 1988)

Bajcsy advocated for the use of active perception to control

information gathering for robotics, which represented one of the

earliest calls for deliberative information gathering in agents. They

developed a hierarchical approach to improve sensing both locally

and globally.

(Floreano & Mondada,

1994)

Floreano & Mondada studied the use of neural networks and genetic

algorithms to learn controllers to guide active perception in robotics.

Their algorithms resulted in learned automated behavior such as

targeted exploration for missing information.

(Grass & Zilberstein,

1997; 2000)

Grass & Zilberstein developed Value-Driven Information Gathering

(VDIG) for automating information gathering from the internet to

support human users’ decisions.

(Lesser et al., 2000)

Lesser et al. studied resource-Bounded Information Gathering (BIG),

including an agent for (goal oriented and opportunistic) planning for

information gathering from sources distributed across the internet.

(Weyns, Steegmans, &

Holvoet, 2004)

Weyns, Steegmans, & Holvoet developed one of the first domain-

independent frameworks for active sensing by agents. They studied

this framework in the context of situated agents (researching the

relationship and connections between an agent and its environment).

(Weyns, Helleboogh, &

Holvoet, 2005)

Weyns, Helleboogh, & Holvoet implemented a simulation

environment called Packet-World for their study of active sensing.

(So & Sonenberg, 2009)

So & Sonenberg studied the application of active perception for

situation awareness in intelligent agents in order to direct an agent’s

attention to the most interesting or relevant features of the

environment for information gathering.

agent sensing as a primary objective has recently begun growing in popularity in the

literature. In this subsection, we review some of the general history of deliberative

information gathering within the agents literature in order to place our research in the

context of the state-of-the-art. We summarize this history in Table 2.1. We will further

elaborate in Section 2.2 on recent deliberate sensing research using a similar type of

solution to our solutions in Chapters 3 and 4.

To begin, Bajcsy (1988) and Floreano & Mondada (1994) were two of the first

researchers to explore the needs for (and benefits of) deliberately choosing how to

perform sensing in order to improve the quality and quantity of information gathered by

www.manaraa.com

20

agents. Specifically, both explored an area of research called active perception
2
 whereby

a robotic agent makes control decisions about gathering information used to model the

environment, controlling either (1) what raw data to collect as observations during

sensing (e.g., active control of vision cameras (Bajcsy, 1988)), or (2) what information to

extract from raw data when processing observations from the agent’s sensors. Using

active perception, Bajcsy (1988) and Floreano & Mondada (1994) advocated that

autonomous, intelligent agents could improve their understanding of the world around

them, which in turn would improve their ability to complete tasks in the environment. To

perform active perception, Bajcsy (1988) considered a hierarchical approach that

improved information gathering both locally with respect to individual models of the

environment, as well as globally across components used for sensing. Floreano &

Mondada (1994), on the other hand, used neural networks and genetic algorithms to learn

how to sense in complex environments, resulting in automated behavior such as targeted

exploration for missing information.

 A few years later, in response to the growing amount of information valuable to

human users offered through various web pages and services, Grass & Zilberstein (1997;

2000) developed an agent-based framework called Value-Driven Information Gathering

(VDIG) using software agents to choose what information to collect for users, as well as

how to collect it, in order to support human users’ decisions (e.g., purchasing software

online). Similarly, Lesser et al. (2000) developed an autonomous, intelligent software

agent called BIG (resource-Bounded Information Gathering) that was capable of

multilevel planning to choose how to deliberatively gather information from the internet

2
 Recall (c.f., Section 1.1) that in this research, active perception and active sensing are synonymous with

deliberative information gathering. “Active” refers to the agent conscientiously (i.e., deliberatively)

choosing actions for their sensing or information gathering value.

www.manaraa.com

21

for human users. Details of how VDIG and BIG performed deliberative information

gathering are provided in Section 2.3.

More generally, Weyns, Steegmans, & Holvoet (2004) were one of the first to

study the need for general purpose, domain independent approaches for deliberative

information gathering by agents. In particular, they studied what they called active

sensing
3
 and focused on improving information gathering for agents as part of their

research studying situated agents (i.e., the relationship and connections between agents

and their environments). They developed an extensible framework that divides

information gathering into three components: (1) sensing, which collects raw values from

the environment, (2) interpreting, where raw observations are converted into domain-

specific representations for knowledge, and (3) filtering, where only the relevant and/or

important observations are retained for knowledge refinement. We take a similar

perspective
4
 to information gathering in our research (as a process of collecting and

transforming raw observations into useful information for refining agent knowledge to

support agent reasoning). To control information gathering in a deliberative manner,

Weyns, Steegmans, & Holvoet propose that domain-specific optimizations over sensing

benefits and costs should be embedded by the developer in the selection of which raw

observations to collect in the sensing component, as well as in the filtering of processed

observations in the filtering component. As part of this research, Weyns, Helleboogh, &

3
 Again, recall (c.f., Section 1.1) that in this research, active perception and active sensing are synonymous

with deliberative information gathering. “Active” refers to the agent conscientiously (i.e., deliberatively)

choosing actions for their sensing or information gathering value.
4
 However, we use the terms “sensing” and “information gathering” interchangeably and do not limit the

meaning of the term “sensing” to be collecting raw observations, as done by Weyns, Steegmans, & Holvoet

(2004)

www.manaraa.com

22

Holvoet (2005) also developed one of the first testbed environments for deliberative

information gathering in their Packet-World simulation.

Similar to Weyns, Steegmans, and Holvoet’s (2004) research on situated agents,

So & Sonenberg (2009) explored the use of active perception to improve situation

awareness within intelligent agents. That is, in order to best understand the agent’s

current situation in its situated environment, So & Sonenberg advocated the use of active

perception to proactively direct the agent’s attention to the most relevant or important

aspects of its environment for observation (e.g., interesting events or to fill in missing

information from the agent’s knowledge) and improve upon the traditional belief-desire-

intention (BDI) framework (Rao & Georgeff, 1995) for agent reasoning. To guide active

perception, So & Sonenberg considered the use of a logical events calculus.

2.2. Deliberative Information Gathering with Active Sensing POMDPs

One popular solution approach to performing deliberative information gathering

in the intelligent agent literature is the active sensing (or active perception) POMDP. In

particular, the active sensing POMDP has been commonly used to (1) model the

dynamics and goals of the deliberative information gathering problem for agents and (2)

generate dynamic plans for choosing sensing actions to perform based on the agent’s

current situation (e.g., Doshi and Roy, 2008; Guo, 2003; Spaan et. al, 2010; Williams and

Young, 2007). In this subsection, we first formalize the general POMDP (and the related

fully observable MDP) to provide the background necessary for understanding both (1)

important prior work in deliberative information gathering, as well as (2) three of our

solution techniques for reflective, deliberative information gathering (presented in

Chapters 3, 4, and 6 later in this dissertation). Then, we discuss how the deliberative

www.manaraa.com

23

information gathering problem is commonly modeled within a POMDP. Finally, we

provide examples of prior work using active sensing POMDPs for deliberative

information gathering. We summarize the related work on active sensing POMDPs in

Table 2.2.

2.2.1. Markov Decision Process

Formally, a (discounted, finite state) MDP can be represented mathematically as a

tuple 〈𝑆, 𝐴, 𝑇, 𝑅, 𝛾〉 [Kaelbling, Littman, & Cassandra, 1998]. Within this model, 𝑆 = {𝑠}

represents the set of states of the agent’s environment. Since the environment is fully

observable, the agent always knows the current state 𝑠 in an MDP. The agent can

perform actions from 𝐴 = {𝑎}. Taking an action 𝑎 in state 𝑠 both (1) earns the agent a

reward 𝑅(𝑠, 𝑎) according to a reward function 𝑅: 𝑆 × 𝐴 → ℝ and (2) stochastically

changes the state of the environment to a next state 𝑠′. The transition function 𝑇: 𝑆 × 𝐴 ×

𝑆 → [0,1] models the probability that action 𝑎 changes the dynamic environment from

state 𝑠 to 𝑠′: 𝑇(𝑠, 𝑎, 𝑠′) = 𝑃(𝑠′ | 𝑠, 𝑎).

The agent’s goal is to determine a plan of actions called a policy 𝜋: 𝑆 → 𝐴 that

controls what action the agent takes based on its current state in order to maximize

cumulative, discounted rewards:

 𝐸[∑ 𝛾𝑡𝑟𝑡
𝑛
𝑡=0] (2.1)

where 𝑟𝑡 is the reward received at time 𝑡, 𝑛 is the planning horizon (i.e., number of steps

to plan ahead), and 𝛾 ∈ [0,1) is a discount factor for weighting future, uncertain rewards.

2.2.2. Partially Observable Markov Decision Process

The POMDP, on the other hand, is an extension of the MDP to partially

observable environments. Formally, a POMDP can be represented mathematically as a

www.manaraa.com

24

tuple 〈𝑆, 𝐴, 𝑍, 𝑇, 𝑂, 𝑅, 𝛾, 𝑏0〉 with 𝑆, 𝐴, 𝑇, 𝑅, 𝛾 as in the MDP (Kaelbling, Littman, &

Cassandra, 1998). Since POMDPs are used in partially observable environments, the

current state of the environment 𝑠 is assumed to be hidden from the agent. Instead, after

each action, the agent receives an observation from the set 𝑍 = {𝑧} that reveals some

information about the next state of the environment 𝑠′. The observation function

𝑂: 𝑆 × 𝐴 × 𝑍 → [0,1] models the probability that next state 𝑠′ and action 𝑎 produce

observation 𝑧: 𝑂(𝑠′, 𝑎, 𝑧) = 𝑃(𝑧 | 𝑠′, 𝑎).

Since the environment state is hidden from the agent at any point in time, the

agent faces uncertainty about the current state of the environment. This type of

uncertainty is addressed by the agent through maintaining a probability distribution over

possible states called a belief state 𝑏: 𝑆 → [0,1] such that

 ∑ 𝑏(𝑠) = 1𝑠∈𝑆 (2.2)

 𝑏(𝑠) ≥ 0, ∀𝑠 ∈ 𝑆 (2.3)

so that 𝑏 ∈ 𝛱(𝑆), where 𝛱(𝑆) denotes the set of probability distributions over 𝑆.

After taking action 𝑎 and receiving observation 𝑧, the agent’s belief state

probability distribution 𝑏 is updated to incorporate the new information using a Bayesian

update:

 𝑏𝑎,𝑧(𝑠′) = 𝑃(𝑠′| 𝑎, 𝑧, 𝑏) =
𝑃(𝑧 | 𝑠′,𝑎,𝑏)𝑃(𝑠′| 𝑎,𝑏)

𝑃(𝑧 | 𝑎,𝑏)
=

1

𝑃(𝑧 | 𝑎,𝑏)
𝑂(𝑠′, 𝑎, 𝑧) ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑏(𝑠)𝑠∈𝑆 (2.4)

where 𝑃(𝑧 | 𝑎, 𝑏) normalizes belief state 𝑏𝑎,𝑧 so that it remains a valid probability

distribution under Eq. 2.2. As the agent performs more and more actions and thus

receives more and more observations, its beliefs change from the initial belief state 𝑏0

(the prior distribution over environment states, often a uniform distribution) to a posterior

www.manaraa.com

25

belief state 𝑏𝑡 (after taking 𝑡 actions and receiving 𝑡 observations) in order to reduce the

agent’s uncertainty about the current environment state.

Using the POMDP model, the agent’s goal is to maximize the cumulative rewards

it earns for taking actions while operating in the environment. Since the agent is

uncertain about the current state of the environment, it aims to maximize expected

rewards:

 𝐸[𝑟𝑡] = 𝑅(𝑏𝑡, 𝑎𝑡) = 𝐸[𝑅(𝑠𝑡, 𝑎𝑡)| 𝑏𝑡] = ∑ 𝑏𝑡(𝑠𝑡)𝑅(𝑠𝑡, 𝑎𝑡)𝑠𝑡∈𝑆 (2.5)

In order to accomplish this goal, the agent plans a policy 𝜋: 𝛱(𝑆) → 𝐴 (over belief

states instead of states, as in an MDP) prescribing an action 𝑎 to take dependent on the

agent’s belief state 𝑏. The policy is calculated by recursively or iteratively solving the set

of Bellman equations to calculate the agent’s expected cumulative rewards:

 𝑉(𝑏0, 𝜋) = 𝐸[∑ 𝛾𝑡𝑟𝑡
𝑛
𝑡=0] (2.6)

 𝑉(𝑏) = max𝑎∈𝐴 𝑄(𝑏, 𝑎) (2.7)

 𝑄(𝑏, 𝑎) = 𝑅(𝑏, 𝑎) + 𝛾 ∑ 𝑏(𝑠) ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑠′∈𝑆𝑠∈𝑆 ∑ 𝑂(𝑠′, 𝑎, 𝑧)𝑉(𝑏𝑎,𝑧)𝑧∈𝑍 (2.8)

then choosing

 𝜋(𝑏) = argmax𝑎∈𝐴 𝑄(𝑏, 𝑎) (2.9)

To plan a policy 𝜋 satisfying Eq. 2.9, an agent must recursively solve Eqs. 2.7-

2.9. This entails iteratively computing values of 𝑄(𝑏, 𝑎) for additional belief states 𝑏𝑎,𝑧

that the agent might experience in the future to accurately calculate the long-term

cumulative value from its initial belief state 𝑏0. The tradeoff is that the farther into the

future the agent plans, the more accurately it will account for future rewards and thus

choose better actions, but deeper planning requires more time and the number of possible

future belief states grows exponentially with planning depth 𝑛.

www.manaraa.com

26

Due to the computational complexity of computing policies for large POMDPs,

finding exact solutions can be quite difficult. Thus, approximate solutions are commonly

employed, which estimate the exact policy the agent should perform. Examples of

popular approximate solutions include point-based methods (Shani, Pineau, & Kaplow,

2013) that determine appropriate actions around select belief states the agent might

encounter, such as PBVI (Pineau et. al, 2003), Perseus (Spaan and Vlassis, 2005), HSVI

(Smith and Simmons, 2004), and SARSOP (Kurniawati et al., 2008). An agent can build

its policy maximizing expected rewards offline, allowing for more computational time

and resources to build a larger policy, then follow the policy while operating online in the

environment. Alternatively, an agent can also use more recent methods to interleave

planning and execution online to adapt to unforeseen situations, such as state-of-the-art

online POMDP planning algorithms (Ross & Chaib-draa, 2007; Ross et al., 2008; Zhang

& Chen, 2012). We will provide background on online algorithms for POMDPs in

Sections 3.2 and 4.2.

2.2.3. Active Sensing POMDP

Most often, the information variables the agent is trying to discern through

sensing are represented by the hidden states 𝑆 in an active sensing POMDP (e.g., Guo,

2003; Doshi and Roy, 2008). Furthermore, factors internal to the agent or external in the

environment that can influence the observations gathered by sensing are also represented

in the state space, such as user behavior history (Williams and Young, 2007),

bookkeeping variables for controlling reasoning (Spaan, Veiga, & Lima, 2010) and

remembering history, as well as the state of stateful resources that can corrupt gathered

information (Eck, 2010; Eck & Soh, 2011; 2013c). The different sensing actions the

www.manaraa.com

27

agent can perform to gather information are represented by the POMDP’s actions 𝐴, and

the observations 𝑍 reflect information collected that help the agent refine its beliefs about

which state is the correct one (i.e., what the true value of the information variables the

agent intends to know through sensing). How the agent chooses actions to achieve its

goals (e.g., uncertainty reduction, balancing the tradeoff between sensing costs vs. task

accomplishment) is controlled by the reward function 𝜌 used in the POMDP. Most

commonly, 𝜌 is chosen to be Eq. 2.4 and causes the agent to choose sensing actions that

both (1) lead the agent to large future task-based rewards and (2) have low cost.

However, other types of reward functions have recently been proposed that add some

level of reflection to the agent’s sensing action selection, which we will discuss in more

detail in Section 2.3. We also propose a more principled way to add reflection to the

active sensing POMDP using PBRS for POMDPs in Chapter 3.

2.2.4. Applications of the Active Sensing POMDP

One popular application of active sensing POMDPs is user preference elicitation,

whereby the agent gathers information about a human user’s preference over a set of

items (e.g., products, interest, goals). Such interactions with humans are important for a

range of environments, including recommendation systems (e.g., Adomavicius and

Tuzhulin, 2005), computer supported collaborative learning systems (e.g., Khandaker et.

al, 2011), and personal assistant agents (e.g., Eck & Soh, 2012b; Myers et. al, 2007;

Yorke-Smith et. al, 2009). For example, Boutilier (2002) considered an active sensing

POMDP for determining user utility functions over a range of items. Additionally, Doshi

and Roy (2008) described an active sensing POMDP for first discovering a user’s current

goal, then acting on the goal to provide intelligent user support. Similarly, Williams and

www.manaraa.com

28

Table 2.2: Related Active Sensing POMDP Research

Reference Contributions

(Boutilier, 2002)
Boutilier studied the preference elicitation POMDP for modeling

deliberatively gathering information about a human user’s preferences.

(Guo, 2003)

Guo cast the classification problem (identifying an unknown object) as

a POMDP in order to deliberately choose how to gather information to

result in accurate classification.

(Sabbadin, Lang, &

Ravoanjanahary,

2007)

Sabbadin, Lang, & Ravoanjanahary developed the epistemic MDP, a

specific form of the active sensing POMDP (with no state transitions

and only information gathering actions).

(Williams & Young,

2007)

Williams & Young applied POMDPs to the problem of understanding

human user speech in an automated telephone dialog system.

(Doshi & Roy, 2008)

Doshi & Roy developed improved solutions for solving the preference

elicitation POMDP used to gather information during human-agent

interactions.

(Spaan, 2008;

Spaan, Veiga, & Lima,

2010)

Spaan studied the use of POMDPs to control information gathering by a

team of cooperating robotic and sensor agents in order to enable the

team to appropriately respond to events in the local area.

(Cohn et al., 2010;

Cohn, Durfee, &

Singh, 2011)

Cohn et al. proposed expected myopic gain algorithms for choosing

queries (i.e., information gathering actions) to ask human operators to

learn how to act autonomously for the human operator in an MDP using

Bayesian inverse reinforcement learning.

(Eck, 2010;

Eck & Soh, 2011;

2013c)

Eck & Soh developed the Observer Effect POMDP for controlling

information gathering to appropriately use stateful resources and

avoid/mitigate the Observer Effect during agent sensing.

Young (2007) considered the problem of determining and responding to user goals during

human-agent dialog management. In these problems, the goal of the agent when

choosing sensing actions is often to minimize costs from sensing and failed intelligent

support (Doshi and Roy, 2008; Williams and Young, 2007), or maximizing the value of

information collected during sensing with respect to the user’s task (Boutilier, 2002).

Active sensing POMDPs have also been used for other applications of intelligent

agent-based systems. For example, Guo (2003) used an active sensing POMDP to

control sensing actions used to classify the label of objects in the agent’s environment

while minimizing sensing costs. Moreover, Spaan (2008; et. al, 2010) used an active

sensing POMDP to integrate observations from fixed position cameras and control the

movements of a mobile robot to best observe a common area and respond to events and

www.manaraa.com

29

users in need of assistance. Also, Eck and Soh (2013c) used the Observer Effect POMDP

to control sensing with stateful resources to maximize knowledge refinement and

minimize distortions in observations from changing the state of resources during sensing.

Furthermore, another model very similar to the active sensing POMDP has also

been proposed in the literature. Specifically, epistemic MDPs (Sabbadin, Lang, &

Ravoanjanahary, 2007) model the environment similar to active sensing POMDPs but

exclusively consider epistemic actions that only gather information from the environment

but do not change the state of the environment. Thus, epistemic MDPs are appropriate

for active sensing applications where the primary goal of the agent is to discern the

correct state of the environment without having to worry about affecting the environment

during sensing. To account for this difference from general active sensing, the state

transition probabilities are removed from the standard POMDP model. However,

although this relaxation of the POMDP is more concise and has fewer terms in its

calculations, Sabbadin, Lang, & Ravoanjanahary prove that the relaxation does not

improve the model’s complexity except under certain strict conditions (e.g., observations

are deterministic
5
). Thus, an epistemic MDP can be represented as an active sensing

POMDP without affecting the complexity of the solution by using deterministic state

transitions (c.f., Section 2.2.1):

 𝑇(𝑠, 𝑎, 𝑠′) = { 1 if 𝑠 = 𝑠′
 0 else

 (2.10)

In fact, actions have already been assumed to be purely epistemic in some applications of

active sensing POMDPs (e.g., Guo, 2003).

5
 That is, taking the same action resulting in the same state always returns the same observation, but

different states and actions can produce the same observation

www.manaraa.com

30

Finally, similar research has also been proposed in the setting of Bayesian inverse

reinforcement learning (with an MDP model of the environment) for deliberatively

choosing information gathering actions. Specifically, when an agent needs to learn how

to act autonomously in lieu of a human operator according to the human's preferences,

Cohn et al. (2010; Cohn, Durfee, & Singh, 2011) propose expected myopic gain

algorithms for choosing queries to ask the human operator to myopically improve the

agent's understanding of either (1) the unknown environment dynamics modeled by the

transition function 𝑇 (Cohn et al., 2010), (2) the unknown reward function 𝑅 (Cohn et al.,

2010), or (3) the preferred action 𝑎 for a given state 𝑠 (Cohn, Durfee, & Singh, 2011).

2.3. Reflective Information Gathering

In this subsection, we next review some of the general history of reflective

information gathering. We summarize this history in Table 2.3.

2.3.1. Reflection for Deliberative Information Gathering

In some of the earliest work on reflection in information gathering, Zilberstein

(1996; with Russell, 1993) studied how to allocate resources within information gathering

in autonomous robots to support the robot’s tasks (e.g., movement to a location). In

particular, they considered the observation processing component of information

gathering (i.e., transforming raw observations into useful information for reasoning, such

as raw vision pixels into information about the agent’s surroundings). The goal of this

research was to control how much time was spent on processing information during

information gathering to avoid consuming computational resources that could instead be

used by the agent’s task-oriented reasoning. Thus, the agent faced a tradeoff between

time available for reasoning vs. the quality of information necessary for reasoning

www.manaraa.com

31

Table 2.3: Related Reflective Information Gathering Research

Reference Contributions

(Zilberstein &

Russell, 1993;

Zilberstein, 1996)

Zilberstein studied the use of performance profiles to reflect on the

computational resources used to process gathered information in order to

develop anytime algorithms to control information gathering.

(Grass & Zilberstein,

1997; 2000)

Grass & Zilberstein calculated the value of information collected by

sensing actions and reflectively weighed this benefit against sensing costs

to control information gathering in VDIG.

(Lesser et al., 2000)

Lesser et al. evaluated the results of sensing (both goal directed and

opportunistic, e.g., costs and uncertainty) in order to plan sensing actions

in BIG.

(Padhy et al., 2006)

Padhy et al. developed an algorithm for sensing frequency control that

reflectively compared observations to agent knowledge in order to know

when to speed up sensing to understand the dynamic environment vs.

when to slow down sensing to conserve limited energy resources in agent-

based wireless sensors.

(Krause & Guestrin,

2005; 2007; 2009;

Krause et al., 2008)

Krause et al. studied the Observation Selection Problem to optimize

various objective functions (e.g., contamination detection, variance

minimization) over gathered information according to cost constraints.

(Mihaylova et al.,

2002)

Mihaylova et al. proposed the use of hybrid reward functions for active

sensing POMDPs that consider not only the task-oriented costs and

benefits of actions, but also reflectively evaluate expected improvements

in agent knowledge (i.e., its belief state).

(Sabbadin, Lang, &

Ravoanjanahary,

2007)

Sabbadin, Lang, & Ravoanjanahary proposed several reward functions for

their epistemic MDP (a variant of the active sensing POMDP) that reflect

on the benefits and costs of sensing actions in order to guide deliberative

information gathering.

(Araya-Lopez et al.,

2010)

Araya-Lopez et al. introduced belief-based reward functions for active

sensing POMDPs that exclusively reflect on the benefits of sensing

actions with respect to agent knowledge. They also prove several

important theoretical properties of the use of such non-traditional reward

functions within POMDPs (e.g., convexity for optimization in POMDP

solvers).

(requiring time spent instead on information gathering). Using performance profiles to

reflectively model the benefits of sensing per unit of time consumption, Zilberstein

developed anytime algorithms to control sensing and optimize the overall behavior of the

robot.

Within the VDIG framework (c.f., Section 2.1), Grass & Zilberstein (1997, 2000)

compared the agent’s a priori knowledge about the supported human user’s decision with

the information available from sources across the internet in order to calculate the value

of information with respect to the user’s decision (based on the expected utility to the

www.manaraa.com

32

user of gaining such information), and chose to continue retrieving information for the

user so long as the value of information collected continued to exceed the costs (e.g., time

to retrieve the information, money paid to an information source on the internet) of

gathering such information. Similarly, BIG (Lesser et al., 2000) considered the results of

sensing to determine how to deliberatively gather information, both (1) from the top

down during its multilevel planning by evaluating important properties of its generated

plans such as costs (e.g., time and money) and uncertainty, as well as (2) from the bottom

up to discover opportunities for low cost sensing to meet its overall information gathering

objectives. Together, both VDIG and BIG represent domain-specific frameworks for

reflecting on deliberative information gathering that could possibly be extended to more

generic approaches for domain-independent, reflective, deliberative information

gathering.

Elsewhere in the intelligent agents literature, Padhy et al. (2006) created a

reflective solution for sensing frequency control within the context of agent-based

wireless sensor networks. In an effort to minimize unnecessary limited energy

consumption during environment monitoring, they developed an algorithm that compared

recent observations to the agent’s knowledge about the environment to determine

whether or not its observations (and the thus environment being monitored) were

dynamically changing. When the observations remained static, the agent’s knowledge

was still up-to-date, so an agent reduced its sensing frequency to also reduce energy

consumption and extend the lifetime of the sensor network. On the other hand, when

new observations were unexpected based on the agent’s knowledge, the agent increased

www.manaraa.com

33

the sensing frequency to quickly adapt and build a more up-to-date model of the dynamic

environment under observation.

Beyond sensing only with intelligent agents, Krause et al. (2008; with Guestrin,

2005; 2007; 2009) studied the Observation Selection Problem (OSP), which looked at

how to gather information from a general AI perspective (with or without intelligent

agents). Specifically, the OSP cast information gathering as an optimization problem

over at least one objective function reflectively measuring the goodness of information

(e.g., likelihood of contamination detection by distributed sensors in a monitored space

(Krause and Guestrin, 2009), minimizing variance of observed data (Krause et al., 2008),

or optimizing navigational paths for robotic patrol (Singh et al., 2009)) while adhering to

various cost constraints. Based on properties of the objective function (e.g.,

submodularity), they developed greedy solutions that find approximately optimal

solutions very quickly, in spite of the fact that the general OSP is NP-Complete, and thus

computationally difficult to solve.

2.3.2. Reflection for the Active Sensing POMDP

With respect to the active sensing POMDP, Araya-Lopez et al. (2010) have

recently advocated the use of a different type of reward function 𝜌 that reflects on the

current knowledge of the agent (stored in its belief state 𝑏) in order to reflectively guide

deliberative information gathering. This type of function, called belief-based reward

functions, breaks from tradition and ignores individual states (i.e., is not based on

𝑅(𝑠, 𝑎)) and instead calculates a measure of quality over the entire belief state. Thus,

belief-based rewards reflect the quality of the agent’s sensing through its current

knowledge refined from observations. This type of reward function is useful as it directly

www.manaraa.com

34

measures the immediate goal of sensing: to refine the agent’s knowledge about its

environment. Thus, the agent can directly optimize the quality and/or quantity of

information gathered (with respect to its current beliefs) by optimizing a belief-based

function.

For example, if the primary goal of sensing is to reduce the uncertainty in the

agent’s beliefs amongst a set of alternatives, the agent can use expected entropy in its

belief state as a measure of uncertainty, then employ the negative of its entropy as its

rewards to minimize uncertainty in its beliefs:

 𝜌(𝑏, 𝑎) = −𝐻(𝑏) = ∑ 𝑏(𝑠) log|𝑆| 𝑏(𝑠)𝑠∈𝑆 (2.11)

This example of a belief-based function is one of the most commonly proposed

(e.g., Araya-Lopez et. al, 2010; Mihaylova et. al, 2002; Sabbadin, Lang, &

Ravoanjanahary, 2007). Other belief-based reward functions that also reflect on agent

knowledge in order to accomplish similar goals include maximizing the expected top

belief (an approximation of certainty):

 𝜌(𝑏, 𝑎) = max𝑠∈𝑆 𝑏(𝑠) (2.12)

when only the top belief is important, or maximizing expected information gain, such as

through the popular Kullback-Leibler divergence measure (i.e., relative entropy) (Araya-

Lopez et. al, 2010; Mihaylova et. al, 2002):

 𝜌(𝑏, 𝑎) = 𝐸[𝐾𝐿(𝑏, 𝑏𝑎)] = 𝐸 [∑ 𝑏(𝑠) log|𝑆|
𝑏(𝑠)

𝑏𝑎(𝑠)𝑠∈𝑆] (2.13)

Furthermore, hybrid reward functions represent a way to combine both state-

and belief-based rewards in a coherent, principled manner in order to achieve action

selection that is both task-oriented and reflective about information gathering. As its

name implies, this type of function considers both of the other types simultaneously,

www.manaraa.com

35

often in the form of a weighted function between the alternative reward types (Araya-

Lopez et. al, 2010; Mihaylova et. al, 2002; Eck & Soh, 2012c). Hybrid reward functions

are potentially useful because they simultaneously consider both the cost-aware

perspective of state-based functions and the sensing benefit-aware perspective of belief-

based functions to potentially produce very efficient and effective sensing. For example,

an agent might use a combination of expected state-based rewards 𝑅(𝑠, 𝑎) (Eq. 2.5) and

the negative entropy function (Eq. 2.11):

 𝜌(𝑏, 𝑎) = 𝑤 ∑ 𝑏(𝑠)𝑅(𝑠, 𝑎) − (1 − 𝑤)𝑠∈𝑆 𝐻(𝑏) (2.14)

to simultaneously consider both the costs and immediate belief improvement benefits of

sensing, along with the benefits and costs of stopping sensing to perform its task. Here,

𝑤 represents a weight balancing the importance of the two types of rewards. This weight

can either be fixed a priori or adjusted over time in response to both changing

environment conditions and/or the performance of the agent.

Furthermore, other types of hybrid functions have also been proposed. For

example, Sabbadin, Lang, & Ravoanjanahary (2007) proposed (as one of many reward

functions considering beliefs) including costs incurred for all non-terminating sensing

actions used to gather information, then rewarding the agent based on a belief-based

reward function only for the final step of its policies (i.e., when the agent stops sensing).

This is similar to state-based functions in that sensing actions incur costs and positive

rewards are received after sensing (to guide the agent towards terminal conditions for

sensing, e.g., task accomplishment). However, the final rewards depend on the value of

the agent’s beliefs rather than any particular state the agent believes is correct.

www.manaraa.com

36

Table 2.4: Related Multiagent Information Sharing Research

Reference Contributions

(Glinton, Scerri, &

Sycara, 2009; 2010;

2011)

Glinton, Scerri, & Sycara defined the Large Team Information

Sharing (LTIS) problem for observing static environment

phenomena and:

 studied emergent information flow behavior within the team

when various problem parameters were changed (e.g., belief

update weighting, degree network connectivity)

 developed analytical models predicting and describing

emergent information flow

 produced a distributed algorithm (DACOR) for optimizing

information flow to reach consistent, accurate beliefs

through the team of agents, and

 studied the effect of malicious or faulty agents injecting bad

information within the networked team

(Pryymak, Rogers, &

Jennings, 2012)

Pryymak, Rogers, & Jennings developed another distributed

algorithm (AAT) for the LTIS problem that achieved similar good

performance to DACOR without requiring any more network

communication than just shared information (i.e., no coordination

messages)

(An et al., 2011)
An et al. studied agent-powered distributed resource allocation for

sensing networks applied to environmental weather monitoring.

(Stein, Williamson, &

Jennings, 2012)

Stein, Williamson, & Jennings studied information sharing with

limited communication resources and developed an algorithm

controlling who an agent should communicate with, what

information should be shared, and how communication resources

should be divided between agents.

2.4. Multiagent Information Gathering with Limited Sensors

Next, we introduce recent related work from the multiagent systems literature

describing multiagent sensing when the sensing capabilities of agents are limited (related

to our Information Sharing Problem, c.f., Section 1.3). We summarize this related work

in Table 2.4.

Most relevant to our own research presented in Chapter 5, Glinton, Scerri, &

Sycara (2009; 2010; 2011) introduced and studied the Large Team Information Sharing

(LTIS) problem. In LTIS, a very large team (e.g., consisting of more than 1000 agents)

work together to form consistent, accurate beliefs about some phenomena in the

environment. Only a very small number of agents (relative to the size of the team) posses

www.manaraa.com

37

sensors that can directly observe each phenomenon of interest, whereas all other agents

must rely on shared information from sensor agents to gather information about the

phenomenon. Glinton, Scerri, & Sycara (2009) first studied the emergent dynamics of

information flow and belief updates throughout such a team observing static phenomena

based on different parameters of the network (e.g., belief update weighting representing

confidence in neighbors’ beliefs, degree network connectivity representing

communication pathways and size of sub-teams). Afterwards, they (2010) developed

analytic models formalizing the behavior of information flow in such teams, as well as a

distributed solution for optimizing the team’s convergence to consistent, accurate beliefs.

Later, Pryymak, Rogers, & Jennings (2012) produced another distributed solution that

improved upon the work of Glinton, Scerri, & Sycara by not requiring additional network

traffic to reach good beliefs throughout the team of agents. Finally, Glinton, Scerri, &

Sycara (2011) also studied the robustness of information flow when malicious or faulty

agents inject bad information into an LTIS team of agents. For more details describing

prior work on LTIS, please consult Section 5.2 later in this dissertation.

Beyond LTIS, other recent work has also considered different aspects of

information sharing between cooperative agents when sensing is limited. For example,

An et al. (2011) studied negotiation methods for developing plans allocating limited

resources between agents responsible for cooperatively monitoring the environment.

This research was applied to weather monitoring in a real-world radar system.

Additionally, Stein, Williamson, & Jennings (2012) studied information sharing between

cooperating agents consuming limited shared communications resources. In particular,

they developed a distributed approach for determining (1) who amongst the team each

www.manaraa.com

38

Figure 2.1: Comparison to Prior Reflective, Deliberative Information Gathering

Research within the Analysis Problem

agent should communicate with, (2) what information should be transmitted by each

agent to avoid overloading shared communication resources, as well as (3) how limited

communication channels should be distributed across the team of agents.

2.5. Comparison of our Research to Prior Work

We conclude this related work chapter by placing our dissertation research

studying reflective, deliberative agent-based information gathering within the context of

the state-of-the-art in the intelligent agents and multiagent systems literature described

previously in this chapter.

First, our research studying the Analysis Problem extends prior research on

reflective, deliberative information gathering in the following manner, summarized in

Figure 2.1. On the one hand, our PBRS for POMDPs and DHS + LSEM solutions

represent domain-independent solutions that can applied to a wide variety of intelligent

www.manaraa.com

39

agent applications and domains. This is an improvement over initial reflective solutions

developed for deliberative information gathering (e.g., Zilberstein & Russell, 1993;

Zilberstein, 1996; Grass & Zilberstein, 1997; 2000; Lesser et al., 2000). In particular, our

DHS + LSEM solution works off the shelf to add reflection about sensing benefits to any

problem using POMDPs for planning, whereas our PBRS for POMDPs solution enables

both domain-independent and domain-dependent measures of action benefits and costs

(including towards sensing and knowledge refinement) to be considered during reflective

metareasoning to improve overall agent performance.

On the other hand, our two solutions also provide stronger theoretical guarantees

with respect to improving agent reasoning and actuation (through reflective information

gathering) than the state-of-the-art. Whereas prior research has primarily focused on

theoretically understanding (1) problem complexity (e.g., Krause & Guestrin, 2007;

Sabbadin, Long, and Ravoanjanahary, 2007), or (2) applicability for use within prior

deliberative information gathering techniques (e.g., Araya-Lopez et al., 2010), our two

solutions add additional guarantees that (1) an approximately optimal solution can be

found in finite time (Eck & Soh, 2014b) (c.f., Section 4.4.4), (2) metareasoning can best

benefit the agent when adequate sensing is most difficult (Eck et al., 2015) (c.f., Section

3.3.2), and (3) including metareasoning doesn’t change the objective function being

optimized by the agent and thus should improve the overall performance of the agent

(Eck et al., 2015) (c.f., Section 3.3.2). This is especially important because we have

previously demonstrated (Eck & Soh, 2012c, 2012d) that the aforementioned belief-based

and hybrid reward functions (Eqs. 2.11-2.14) (Araya-Lopez et al., 2010; Mihaylova et

www.manaraa.com

40

Figure 2.2: Comparison to Prior Multiagent Information Gathering

Research within the Information Sharing Problem

al., 2002; Sabbadin, Long, & Ravoanjanahary, 2007) used to provide reflective

metareasoning about sensing to the popular active sensing POMDP can lead to

complicated (and not necessarily beneficial) relationships between reflective information

gathering and overall agent performance, even in two relatively simple active sensing

POMDPs (with very small state, action, and observation spaces).

Second, our Information Sharing Problem research extends prior research on

multiagent reflective, deliberative information gathering in the following manner,

summarized in Figure 2.2. First, our research on the flow of shared information in LTIS

(c.f., Chapter 5) extends prior research studying this problem to consider non-stationary

environments that change over time, and thus require more complicated sensing control

to not only reach consistent, accurate beliefs about environment phenomena of interest to

the team’s reasoning, but also maintain such beliefs as the phenomena change over time.

Additionally, our other research on the Information Sharing Problem studies how to share

information in ad hoc environments, where agents have no prior knowledge of their

peers’ capabilities or willingness to cooperate. Thus, we study more complicated

environments, such as those agents are likely to experience in real-world applications.

Finally, our additional research studying the Environment Impact Problem

extends prior research on reflective, deliberative information gathering in the following

www.manaraa.com

41

Figure 2.3: Comparison to Prior Research on Resource Usage during Information

Gathering within the Environment Impact Problem

manner, summarized in Figure 2.3. In particular, although prior research has studied the

use of limited resources during sensing, such as computational resources (Zilberstein &

Russell, 1993; Zilberstein, 1996) or energy resources (Padhy et al., 2006), little research

has focused on how the use of such resources can change the state of the environment and

thus impact the observations collected by the agent during information gathering. In our

prior work studying the Observer Effect within the Environment Impact Problem (Eck,

2010; Eck & Soh, 2011; 2013c), we began studying such impacts on the quality or

quantity of information gathered by agent sensing when using stateful resources whose

behavior change as they are used by agents for sensing. However, our own prior work

only studied environment impacts in simulation. As part of our future work (c.f., Chapter

7), we intend to study the Observer Effect in a real-world application of reflective,

deliberative information gathering – an intelligent agent for producing adaptive

surveys/interviews for collecting information from human respondents.

www.manaraa.com

42

CHAPTER 3 POTENTIAL-BASED REWARD SHAPING FOR

POMDPS

In this chapter, we present our first solution to the Analysis Problem (c.f., Section

1.3) within the context of POMDPs, a popular approach to deliberative information

gathering (c.f., Section 2.2.2). Taking inspiration from the related field of reinforcement

learning (RL), our solution is to shape the agent’s reward function with information

reflecting the quality of its sensing (e.g., knowledge refinement) to guide the agent

towards actions that both best improve its knowledge (represented by belief states), as

well as allow it to achieve its tasks with high reward.

However, this approach also solves a greater general problem in the POMDP

literature: creating plans to achieve high, cumulative rewards with only short, finite

horizons (i.e., planning steps 𝑛, Eq. 2.6). The same technique we use to imbed reflection

on agent knowledge refined through sensing (potential functions from PBRS) can also be

used to provide hints of where the agent might find high future rewards beyond its

planning horizon, and thus achieve greater cumulative rewards over time (reflection on

sensing outcomes being one such type of hint). As such, this chapter is written to address

the greater finite horizon problem, and was recently published in the Journal of

Autonomous Agents and Multiagent Systems (Eck et al., 2015). We theoretically prove

several important properties and benefits of using PBRS for online POMDP planning and

empirically demonstrate these results in a range of classic benchmark POMDP planning

problems.

This research is joint work with our collaborators Dr. Sam Devlin and Dr. Daniel

Kudenko of the University of York in the United Kingdom.

www.manaraa.com

43

3.1. Introduction

Partially observable Markov decision processes (POMDPs) (Kaelbling, Littman,

& Cassandra, 1998) have become a very popular approach to agent reasoning and

planning, such as for robotics (e.g., Mihaylova et al., 2002; Spaan, Veiga, & Lima, 2010)

and human-agent interactions (e.g., Boutilier, 2002; Doshi & Roy, 2008; Williams &

Young, 2007). POMDPs explicitly model complex environment dynamics, such as

partial observability of environment states revealed through actions, as well as changes to

environment state resulting from actions. Using such information, agents can (1)

discover the true environment state hidden by partial observability in order to reduce the

uncertainty in its beliefs and make more informed decisions, and (2) plan action

sequences that maximize expected rewards given its uncertain beliefs.

Reducing the time spent (i.e., the computational complexity) on planning with

POMDPs has been a topic of much research in the literature (e.g., Kurniawati, Hsu, &

Lee, 2008; Ong et al., 2010; Pineau, Gordon, & Thrun, 2003; Ross & Chaib-draa, 2007;

Silver & Veness, 2010; Smith & Simmons, 2004; Somani et al., 2013; Spaan & Vlassis,

2005; Zhang & Chen, 2012). This is especially important for online POMDP planning

(Ross et al., 2008), where an agent interleaves planning and execution as it operates in

the environment and must therefore plan quickly due to real-time constraints. Ultimately,

the agent’s goal when planning is to calculate a good estimate of the cumulative, future

rewards from its current situation dependent on different actions it could take in order to

choose how to behave in the environment. In most problems, this requires being able to

plan many steps in advance in order to form good estimations of future rewards.

Unfortunately, the complexity of optimal planning is exponential in the planning horizon

www.manaraa.com

44

(i.e., the number of steps the agent looks ahead during planning). Moreover, the

complexity is also polynomial in the size of the state space, which is often quite large

(necessary to adequately capture and reflect the nuances of real-world environments).

Therefore, planning far enough in advance across all possible future situations is

prohibitively expensive (due to time constraints), and thus agents are commonly

restricted to forming approximately best plans, rather than acting optimally, which

reduces their ability to maximize long-term rewards and achieve correct, goal-directed

behavior.

In order to provide the most useful cumulative, future reward estimations, many

of the state-of-the-art approaches to online planning sacrifice the breadth of planning in

order to enable the agent to plan farther in advance for certain situations, thereby

forming better estimations of the rewards (and thus better understanding how to act) in

those situations. The success of this type of approach depends on the agent’s ability to

select (in advance) the correct scenarios it will indeed face. Two common such

approaches to planning include (1) expanding plans selectively along attractive belief

states (according to some heuristic function) using heuristic search (e.g., AEMS2 (Ross

& Chaib-draa, 2007)), or (2) sparse random sampling of situations biased towards highly

probable state/action/observation sequences and high estimated rewards using Monte

Carlo search techniques (e.g., DESPOT (Somani et al., 2013)). So long as the heuristic

chosen in heuristic search methods or the sampling performed in Monte Carlo methods

expands plans along the correct situations towards high future rewards and goal

accomplishment, these approaches have demonstrated an ability to form plans equally as

good as the state-of-the-art offline planners where time constraints are more relaxed and

www.manaraa.com

45

agents can afford greater breadth and depth of planning (Ross et al., 2008; Silver &

Veness, 2010; Somani et al., 2013; Zhang & Chen, 2012).

However, it would be ideal for a POMDP planning algorithm to achieve accurate

cumulative, future reward estimations without having to sacrifice the breadth of planning.

Indeed, sacrificing breadth can be inherently detrimental to the agent’s behavior in

several ways. For example, depth-focused planning algorithms can cause an agent to fail

to adequately consider scenarios it might actually encounter in the near future when

executing the plan (i.e., if they are unattractive according to the chosen heuristic in

heuristic search algorithms or if they are not quite as likely as other scenarios in Monte

Carlo methods), and thus the agent could end up in a position where it does not know

what to do in order to adequately achieve its goals. In complex, real-world applications

of intelligent agents and multiagent systems, such a predicament could even pose

imminent danger to the agent (e.g., a search and rescue robot exploring a damaged

building in a section about to collapse) or affect the quality of the system (e.g., increased

human user frustration caused by improper interactions from a mixed-initiative software

agent). Additionally, in problems requiring long action sequences to achieve large

rewards (e.g., highly uncertain environments requiring large quantities of information

gathering), even depth-focused planning algorithms might fail to adequately plan far

enough down to discover large future rewards and thus underestimate the value of the

best actions, leaving it potentially confused on how best to act, or even overvalue

suboptimal actions (that achieve greater intermediate rewards but lower cumulative

rewards in the long run). This, too, can cause the agent to reach undesirable situations

that make it difficult for the agent to achieve its goals in the long run.

www.manaraa.com

46

Overall, it would be advantageous for an agent if it could implicitly estimate

cumulative, future rewards without requiring time-consuming, explicit, depth-based

calculations so that it can achieve the best of both worlds: allowing time for full breadth

of planning—to avoid the potential pitfalls described above—and also creating better

estimations of cumulative rewards over the long term. This should produce a planner

that is both safer to use in complex environments and still achieves high rewards over

time and ultimately goal achievement. In this chapter, we explore how to perform

implicit future reward estimation within full breadth planning.

In particular we consider a popular technique for implicitly guiding agents

towards large future rewards from the related field of reinforcement learning called

potential-based reward shaping (PBRS) (Asmuth, Littman, & Zinkov, 2008; Devlin &

Kudenko, 2011; 2012; Ng, Harada, & Russell, 1999) and apply this technique to online

POMDP planning. In this context, PBRS uses additional information about the agent’s

current situation (represented by belief states in POMDPs) measured by potential

functions reflecting the potential of earning large future rewards from any particular

situation in order to shape the rewards maximized by the agent. That is, this additional

information guides the agent to optimistically take actions leading to situations (i.e.,

belief states) likely to earn large future rewards beyond its planning horizon, thereby

enjoying the benefits of deeper planning without suffering from the would-be

computational costs.

Although PBRS has previously been applied to planning in less complex fully

observable Markov decision processes (MDPs) (Sorg, Singh, & Lewis, 2011) and can be

www.manaraa.com

47

seen as an extension of leaf evaluation heuristics
6
 (e.g., Ross et al., 2008; Sorg, Singh, &

Lewis, 2011) to anytime planning, this first application of PBRS to online POMDP

planning provides additional insights and benefits previously unreported. Specifically,

we discover and provide several novel contributions to both the PBRS and online

POMDP planning literature:

1. A novel characterization of different categories of potential functions that provide

different indications of which situations are favorable to the agent (beyond its

available planning horizon) for earning greater quantities of cumulative, future

rewards, including both domain-specific and domain-independent expertise.

Previous research has not distinguished between different types of potential

functions, and this categorization helps us understand what types of potential

functions might be useful in different problems.

2. Two novel types of potential functions unique to POMDPs exploiting different

properties of belief states: (a) the agent’s knowledge about the environment

represented as a probability distribution, and (b) a sufficient statistic representing

the history of interactions by the agent with its environment. Such types capture

and exploit information not considered previously in the use of PBRS or leaf

evaluation heuristics for planning, enable agent metareasoning with POMDP

planning, and prove to be very useful for earning large rewards by agents in an

empirical study.

6
 Sorg, Singh, & Lewis (2011) also propose applying their optimal reward framework to MDPs, which is

slightly different from PBRS in that it allows path-dependent reward modifications (as opposed to shaping

only values at leaf and initial situations in PBRS, c.f., Section 3.2). However, they note that in full breadth

planning (as considered in this chapter), optimal rewards are equivalent to leaf heuristics, and thus also to

PBRS. Therefore, for the remainder of the chapter, we only refer to leaf evaluation heuristics, but the same

discussions apply to optimal rewards, as well.

www.manaraa.com

48

3. Several theoretical results describing the benefits of using PBRS during online

POMDP planning, including (a) for any finite horizon of planning depth, PBRS

can result in different plans found than the approximately best plan found without

PBRS, making it possible to achieve plans closer to the actions within the (infinite

horizon) optimal policy when using a potential function that is a good indicator of

future rewards, (b) PBRS has the greatest ability to produce plans that are better

in the long term when using the shortest horizons, making it a good choice for

online planning with real-time constraints, (c) even though PBRS modifies the

reward function maximized by the agent, the (infinite horizon) optimal policy

under PBRS is the same as the (infinite horizon) optimal policy to the original

reward function, so using PBRS still targets plans that optimize the agent’s goals

and task accomplishment (i.e., using PBRS is still working towards the same

objective, even if it finds different, and hopefully better, policies when using

finite horizon planning), and (d) so long as the potential function is convex, the

shaped reward calculations remain convex and can thus be solved by a wide range

of popular POMDP solvers.

4. A comprehensive experimental study investigating the empirical performance of

PBRS for online POMDP planning using 20 different potential functions across

multiple benchmark problems with different properties, as well as an

identification of the benefits and weaknesses of PBRS when compared against

state-of-the-art heuristic search and Monte Carlo planning approaches commonly

used for online POMDP planning. In particular, we discover that combinations of

potential functions including both (a) domain-specific information (as done

www.manaraa.com

49

elsewhere in the PBRS literature) and (b) forms of metareasoning about agent

knowledge and/or histories of agent interactions with the environment (both novel

for POMDPs and proposed in this research) results in improved full breadth

planning by implicitly estimating cumulative, future rewards, and performs very

competitively with (and often exceeding) depth-focused state-of-the-art online

POMDP planning algorithms.

Overall, these contributions demonstrate the usefulness of employing PBRS to

improve online POMDP planning. PBRS enables full breadth planning (for more

comprehensive planning by considering all nearby reachable situations from the current

one) to achieve greater cumulative reward estimation implicitly, as other approaches

intend to do explicitly at the cost of needing to sacrifice breadth of coverage due to

limited time constraints on planning. These contributions also provide additional insights

into the types of information measurable by potential functions that can be useful to

improve agent reward accumulation, which could be used to improve the use of PBRS in

other settings (beyond online POMDP planning, e.g., partially observable reinforcement

learning).

The rest of this chapter is organized as follows. Section 3.2 provides important

background for understanding our approach, including a discussion of POMDPs, online

planning, and PBRS as originally formulated for RL. Section 3.3 introduces our approach

and contains proofs for several important theoretical properties of the policies found

during online POMDP planning with PBRS. Section 3.4 describes the experimental

setup used to empirically evaluate the performance of online POMDP planning with

PBRS on several benchmark POMDP problems, followed by the analysis of our results

www.manaraa.com

50

and a discussion of the broader implications of this work in Section 3.5. Section 3.6

concludes with a summary of our approach and findings, as well as additional

suggestions for future work that we intend to explore.

3.2. Background

3.2.1. Online POMDP Planning

Online planning is one approach to policy construction. In online planning, an

agent iteratively (1) plans a policy 𝜋 from its current belief state 𝑏 while operating in the

environment, then (2) executes that policy for a while before returning to (1) and

repeating the process. By interleaving planning and execution, the agent focuses its

planning efforts on beliefs it actually encounters in the environment, allowing it to adapt

to unlikely and unexpected situations, as well as not waste valuable resources planning

for many unencountered beliefs. These properties are especially beneficial in real-world

applications where agents operate in real-time and cannot estimate in advance all possible

encountered beliefs (e.g., robotic exploration).

Because the agent interleaves planning and execution while operating in the

environment, online planning is usually restricted to limited amounts of time it can afford

for planning. This requirement of quick planning requires the agent to plan for a limited

number of steps ahead (i.e., limited depth) and/or a limited number of possible belief

states imminently reachable from the current belief state (i.e., limited breadth).

Among online planning approaches, several different methods have been

proposed that deal with time constraints during planning in different ways in order to

produce the best estimates of cumulative, future rewards (c.f., Ross et al. (2008) for a

recent survey of online planning methods). Generally, these approaches represent the

www.manaraa.com

51

agent’s policy as a tree with belief states represented by nodes, whereas actions and

observations are represented by branches between belief states (where an action and

observation from one belief state produces another belief state, as in Eq. 2.4). As the tree

is expanded, the algorithms use the new actions and belief states added to the tree to

update the estimated cumulative rewards from the agent’s current belief state (using Eqs.

2.6-2.8). Thus, planning has two parts: (1) constructing the tree by expanding nodes as

time permits, and (2) evaluating the value of action sequences within a tree according the

agent’s reward function to form the policy of actions to take. Different existing

algorithms for online POMDP planning primarily differ in how they choose to expand the

tree to best estimate cumulative rewards within the limited amount of time allotted for

online planning.

Two of the most popular categories of online planning algorithms include

heuristic search methods and Monte Carlo search methods. First, heuristic search

methods (e.g., AEMS2 (Ross & Chaib-draa, 2007), FHHOP (Zhang & Chen, 2012))

focus planning on the most attractive beliefs. Iteratively, heuristic search methods

choose to expand the plan from the leaf belief state in the policy tree that maximizes

some heuristic function. This heuristic function measures how informative each leaf

belief state is towards improving the quality of the plan. For example, state-of-the-art

heuristic search algorithms (e.g., AEMS2 (Ross & Chaib-draa, 2007)) rely on heuristics

measuring both (1) the error bounds on the value function 𝑉 as leaf evaluation heuristics

(i.e., additional upper and lower bounds on future rewards added to the value of a belief

state), reflecting the uncertainty introduced by the belief state into the agent’s overall

www.manaraa.com

52

plan, as well as (2) whether or not the belief state is reached by actions that optimistically

maximize the upper bound on future rewards.

Second, Monte Carlo search methods (e.g., Rollout (Bertsekas & Castanon,

1999), POMCP (Silver & Veness, 2010), DESPOT (Somani et al., 2013)), also called

Monte Carlo Tree Search (MCTS) when used with tree-based policy representations,

perform sparse random sampling of future belief states to estimate cumulative, future

rewards. In particular, these methods expand plans by sampling situations that have (1)

high probabilities in the state transition and observation functions to focus planning on

the most likely sequences of agent beliefs, and (2) earn greater rewards under the current

reward estimations.

Both heuristic search methods and Monte Carlo search methods commonly result

in depth-focused planning since (1) heuristics like AEMS2 favor expanding belief states

along optimistically optimal sequences of actions (determined by the upper bound on

future rewards), and (2) biased sparse random sampling prefers expanding sequences of

belief states that have the greatest likelihood of occurrence. As discussed in Section 3.1,

this focus on depth is advantageous because it allows agents to form more accurate

estimations of the cumulative, future rewards along the deep expansion paths by

recalculating Eqs. 2.6-2.8 repeatedly for the parent belief states along these paths. That

is, it suffers less from over- and under-estimation of future rewards on chosen

action/belief sequences by explicitly searching many steps in advance. So long as the

heuristic function or biased random sampling identifies the correct belief states for which

to plan between the agent’s current belief state and its goal, then the heuristic search or

Monte Carlo search methods should work quite well in practice, as indeed shown through

www.manaraa.com

53

several experimental studies (e.g., Ross et al., 2008; Silver & Veness, 2010; Somani et

al., 2013; Zhang & Chen, 2012).

However, increasing the depth of planning along select paths in the policy tree

requires the agent to sacrifice the breadth of planning within the tree due to limited time

constraints. Specifically, heuristic search methods neglect belief states with high (but not

quite maximum) heuristic value, and random sampling in Monte Carlo search methods

avoids less likely but certainly possible belief state sequences. In many situations,

especially in complex environments, planning for these other belief states could be very

beneficial to improving the overall quality of the agent’s plan and its estimation of

cumulative, future rewards. That is, sacrificing breadth can also lead to suboptimal

policies within the (deeper) finite horizon used for depth-focused planning due to over- or

underestimation of the value of the computed policy since the agent fails to explore all

possible belief state transitions within the policy tree, possibly missing unexpected high

rewards that follow from actions and belief state transitions that are myopically

suboptimal and not chosen for expansion. As discussed in Section 3.1, sacrificing the

breadth of planning can also cause the agent to reach dangerous or undesirable situations

with no forethought on what to do or how to reach a better situation in order to eventually

achieve its goals.

Additionally, heuristic search methods (and some Monte Carlo search methods)

generally require the agent to have computed rough policies offline before using online

planning in order to calculate the upper and lower bounds on the value of actions in belief

states that are used to guide planning. However, if the agent is placed in a complex

environment (e.g., robotic exploration) where the agent has high uncertainty in what

www.manaraa.com

54

situations it will face or if the size of the POMDP is very large, appropriate pre-planning

might be prohibitively expensive.

In Section 3.3, we explore an approach to online POMDP planning that does not

require sacrificing breadth of coverage during planning, yet improves the ultimate actions

chosen from planning by enabling the agent to implicitly look beyond a limited planning

horizon when valuing the actions and belief state transitions within the planning horizon,

enabling better long-term reward maximization. Our approach is most similar to

heuristic search methods for online planning in that it evaluates the quality of belief states

for more than just immediate rewards. However, our approach does not limit expanding

plans only along selected belief states with high heuristic value. Instead, the approach

modifies the rewards considered at each belief state to bias the agent to place higher

value during short, finite horizon planning on policies with greater long term cumulative

rewards (even if such policies are otherwise suboptimal within the short, finite horizon).

Furthermore, our approach does not require information from precomputed plans,

although it can exploit such information if available. We will further describe in more

detail in Section 3.3.1 the fundamental differences between our approach and those

described previously in this section.

3.2.2. Potential-Based Reward Shaping

Potential-based reward shaping (PBRS) was originally proposed by Ng et al.

(1999) as a method to provide hints on how to achieve greater long-term rewards as the

agent learns the reward function in RL. PBRS addresses one important challenge within

RL commonly known as the exploration-exploitation problem: determining how to best

improve the agent’s learned knowledge whilst simultaneously maximizing long-term

www.manaraa.com

55

reward (Eq. 2.1). PBRS handles this challenge by embedding a priori information about

the potential of states to provide the agent with more valuable rewards. Using this

information, the agent is encouraged to choose actions that explore states of high

potential in order to learn about these states and hopefully earn greater future rewards

while operating in the environment.

Within PBRS, a potential function 𝜙(𝑠) defined over states encodes or measures

such a priori information. For example, in a path finding application (e.g., Asmuth,

Littman, & Zinkov, 2008), a good potential function might evaluate the inverse of the

agent’s distance from the goal location, which returns greater values for states (i.e., agent

locations in the maze) closer to where the agent earns large rewards (the goal location).

In order to guide the agent during RL, PBRS shapes the rewards considered

during action selection in Eq. 2.1 by adding an additional amount determined by the

potential function. Specifically, PBRS considers the following reward:

 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎) + 𝐹(𝑠𝑡, 𝑎, 𝑠𝑡+1) (3.1)

 where 𝐹(𝑠𝑡, 𝑎, 𝑠𝑡+1) = 𝛾𝛷(𝑠𝑡+1) − 𝜙(𝑠𝑡) (3.2)

Here, Eq. 3.2 represents the difference in potential future rewards due to moving

from state 𝑠𝑡 to 𝑠𝑡+1. Shaping 𝑟𝑡 by adding this value provides additional motivation to

the agent to choose actions that increase the potential of earning future rewards.

Therefore, by maximizing this representation of 𝑟𝑡 in Eq. 2.1, the agent targets actions

that improve its learning and are more likely to lead to larger rewards. Once the rewards

are learned for those high potential states, the agent can then exploit its learned

knowledge to maximize long-term rewards.

Furthermore, it can be shown (see the proof for Theorem 3.4 for similar details)

that when planning over an infinite horizon, the same policy optimizes rewards with and

www.manaraa.com

56

without PBRS (Asmuth, Littman, & Zinkov, 2008; Ng et al., 1999). Therefore, using

PBRS does not change the (infinite horizon) optimal policy and, due to targeted

exploration, results in faster learning convergence to the optimal policy and higher

cumulative unshaped rewards than only using the original reward function 𝑅. This

equivalence property of the (infinite horizon) optimal policy is one of the primary

advantages of using PBRS to guide exploration in RL (Asmuth, Littman, & Zinkov,

2008; Devlin & Kudenko, 2011; 2012; Ng et al., 1999).

Extending beyond RL, PBRS has also been used to improve planning in fully

observable domains using a Markov decision process (MDP) (e.g., Sorg, Singh, & Lewis,

2011), which has the same mathematical framework as RL but knows the model

parameters a priori. In the context of MDPs, PBRS uses a potential function to guide the

agent to favor policies found during planning that are likely to lead to large future

rewards (equivalent to the use of leaf evaluation heuristics (Sorg, Singh, & Lewis,

2011)). This prior work inspired our own extension of PBRS (which is the first to

formally consider partial observability) to POMDPs, where guiding planning towards

future rewards is especially important when working with limited planning time due to

the increased complexity caused by handling partial observability, as motivated

previously.

Of note, POMDPs can be viewed as a special case of the MDP called a

(continuous state) belief MDP (Kaelbling, Littman, & Cassandra, 1998), where the state

of the MDP represents the current belief state and the state transition function

encompasses all the necessary details of belief state changes (e.g., factoring in

observation probabilities). Thus, upon first glance, using PBRS for planning with

www.manaraa.com

57

POMDPs is a relatively straightforward extension of the prior research employing this

technique with MDPs. However, the novelty of the research presented here is not in the

extension itself (for which we supply the necessary details), but in realizations about the

characteristics of potential functions and the discovery of different types of information

useful to evaluate the value of plans in POMDPs for finding better approximations of the

(infinite horizon) optimal policy when planning with only small, finite horizons. In

previous PBRS research, only a single type of potential function has been defined:

potentials over individual states (Eqs. 3.1-3.2, c.f., Type 1 in Section 3.3.1), whereas in

leaf evaluation heuristics research, another type (c.f., Type 4 in Section 3.3.1) is

commonly used. However, the richness of belief states as probability distributions

representing both agent knowledge about the environment, as well as histories of agent

interactions with the environment, open up additional exploitable opportunities available

when using PBRS with more complex POMDPs, rather than simpler, fully observable

MDPs. In particular, we identify two novel types of information measurable by potential

functions in POMDPs not achievable in MDPs or fully observable reinforcement

learning, including opportunities for metareasoning through reflecting upon the quality of

agent knowledge or the history of the agent’s actions in order to guide improved action

selection. Indeed, we rely on a feature of POMDPs that make planning more complicated

in general (handling partial observability through probabilistic beliefs) and turn it instead

into an advantage in designing good potential functions that improve planning.

Ultimately, both the identification of the existence of different types of available potential

functions, and the consideration of the types of information used in our novel potential

www.manaraa.com

58

functions, could inspire better usage of PBRS in other settings (especially to the very

complicated partially observable reinforcement learning).

3.3. Potential-Based POMDP Planning

In this section, we describe the extension of PBRS to online POMDP planning.

Whereas PBRS has been considered previously for planning in fully observable MDPs

(Sorg, Singh, & Lewis, 2011), this is the first consideration of PBRS for planning within

POMDPs. Thus, we first briefly explain the general thought process behind the extension

and the transformative steps from prior usage of PBRS with MDPs required to use PBRS

with POMDPs. We next identify several different types of potential functions possible

with POMDPs and introduce several novel types that exploit the nature of belief states to

provide a richer set of information than considered previously with PBRS. We also

prove several important results describing the impact of planning with PBRS on both (1)

the policies favored during online POMDP planning, and (2) the optimality of planning.

3.3.1. Extending PBRS to Online POMDP Planning

Overview: We begin by noting that in RL (or MDPs), the agent makes decisions based

on the environment state 𝑠. This is why the potential function 𝜙(𝑠) is defined over

states. In POMDPs, the environment is only partially observable, and thus the agent

rarely knows the true state of the environment. Instead, the agent makes decisions based

on its uncertain belief state 𝑏, which represents the agent’s probabilistic beliefs over

which possible state is the correct one. Therefore, since decisions are made over belief

states in POMDPs, the first fundamental step of our extension is to define potential

functions over belief states: 𝜙(𝑏).

www.manaraa.com

59

Here, the potential function represents a priori information about the potential of

an agent to reach high future rewards from any particular belief state 𝑏. Shortly, we will

detail different classes of information such a potential function can encode or measure,

including novelties to using PBRS with POMDPs (as opposed to fully observable RL and

MDPs, as previously considered).

To include 𝜙(𝑏) in POMDP planning, we define analogous equations to Eqs. 3.1-

3.2 for POMDP rewards:

 𝑟𝑡 = 𝑅(𝑏𝑡, 𝑎) + 𝐹(𝑏𝑡, 𝑎, 𝑏𝑡+1) (3.3)

 where 𝐹(𝑏𝑡, 𝑎, 𝑏𝑡+1) = 𝛾𝛷(𝑏𝑡+1) − 𝜙(𝑏𝑡) (3.4)

As in RL, the reward 𝑟𝑡 for Eq. 2.6 is shaped by adding the difference in potential

in changing belief from 𝑏𝑡 to 𝑏𝑡+1.

Within the context of POMDPs, we now establish several different ways that the

potential function can measure different classes of information based on belief states,

each indicators of future rewards. In addition to considering domain-dependent

information about individual states (as done previously with PBRS in both fully

observable RL and MDPs), an agent can also consider information based on the nature of

belief states as probability distributions representing an agent’s knowledge about the

environment. That is, an agent can directly reason about what it knows (or does not

know) and/or the quality of its knowledge through evaluating these probability

distributions as a form of reflective, deliberative metareasoning. The agent can then relate

its current knowledge to its task at hand in a potential function to predict the future

rewards it will earn. As we will explain below, this provides two key implications: (1)

extending PBRS to POMDPs enables a richer set of information to be considered by

potential functions during planning to result in better plans, and (2) this information can

www.manaraa.com

60

Table 3.1: Types of Potential Functions for POMDPs

Potential Function Type Description

Domain-Dependent

Information from Expected

State Potential

Expected value of domain-dependent information encoded in

state-based potential functions (extended from prior uses of

PBRS in RL and MDPs) . These represent potential functions

of the type commonly used with PBRS.

Domain-Independent

Information

Measures of the intrinsic quality or a property of a belief state

(as a probability distribution over hidden states), such as

certainty in the agent’s beliefs. These represent a novel type

of potential function useful for metareasoning about the

quality of agent knowledge.

Belief Prioritization Preferential ordering on belief states to encourage agents to

reach certain belief states before others (based on domain

expertise). These represent a novel type of potential function

useful for metareasoning about the history of an agent’s

interactions with its environment.

Approximation of Optimal

Value Function

Approximations of the optimal value function from a leaf

belief state (and thus the optimal potential function by directly

measuring future rewards) based on pre-computed policies

using algorithms such as Fast Informed Bound and Blind

(Hauskrecht, 2000). These represent leaf evaluation heuristics

commonly used in online POMDP planning (e.g., Ross et al.,

2008).

be abstracted beyond the agent’s particular domain and can be reused across applications

in characteristically different domains, which is in stark contrast to PBRS for fully

observable environments where potential functions have traditionally been tailor-made

for the agent’s particular domain. We summarize our categorization of four proposed

types of potential functions in Table 3.1.

Potential Function Type 1 (Domain-Dependent Information from Expected State

Potential): First, the information encoded in a potential function might be domain-

dependent information about environment states, similar to the usage of PBRS in fully

observable RL and MDPs. In this case, an extension of the potential function to belief

states would measure the expected potential over states (analogous to Eq. 2.5), based on

the probabilities assigned to each environment state in the belief state:

 𝜙(𝑏) = ∑ 𝑏(𝑠)𝜙(𝑠)𝑠∈𝑆 (3.5)

www.manaraa.com

61

This type of potential function is a simple extension of prior potential functions to

handle the uncertainty present in partially observable domains. It retains the benefits of

exploiting domain-dependent expertise about individual states that have led to the success

of PBRS in fully observable RL and MDPs. However, this type of potential function is

limited in that each potential function must be carefully constructed for the application

and domain at hand, limiting reuse across domains. It is also difficult to apply to a new

domain where little domain expertise is known, or domains that are very complicated

with many possible environment states (as common to many real-world applications of

POMDPs, e.g., robotic exploration).

Potential Function Type 2 (Domain-Independent Information): On the other

hand, by reflecting upon a belief state as a probability distribution representing the

agent’s current knowledge about the environment (i.e., beliefs about the likelihood that

any particular environment state is the correct one), we can produce additional types of

potential functions unique to POMDPs that relate additional classes of information to the

potential of the agent to earn future rewards. Improving upon the first type of potential

function described above, this information can be domain-independent and apply across

multiple applications and domains with differing characteristics, allowing for generalized

solutions having applicability to any domain (especially useful when domain expertise is

limited or difficult to capture within especially large POMDPs, such as those with many

possible hidden states).

In particular, a POMDP potential function might measure some quality or

property of the probabilities in a belief state to predict future rewards. Such behavior is

independent of any particular environment state (differing from traditional potential

www.manaraa.com

62

functions) and can also be independent of the domain where the POMDP is being

employed for planning. For example, in many domains and applications of POMDPs

(e.g., active sensing (Boutilier, 2002; Spaan, Veiga, & Lima, 2010)), one of the primary

goals of the agent is to discover the environment’s hidden state before it acts on its beliefs

to achieve tasks and goals. In such an application, it does not matter which particular

state is the hidden one, only that the agent discovers the hidden state. Therefore, an

important property of a belief state related to the ability of the agent to accomplish its

goals and earn large future rewards is the certainty in its distribution. That is, when an

agent is more certain, it is closer to discovering the true state of the environment and can

soon earn large rewards for accomplishing its goal. Considering agent certainty in this

manner enables the agent to self-reflect on its own beliefs and metacognitively choose

actions that will best revise its knowledge, using potential functions as a form of

metareasoning to improve agent behavior. Certainty in a belief state can be measured in

several ways, each representing a domain-independent potential function leading the

agent towards large future rewards. One method for measuring certainty is to consider

the entropy in the agent’s belief state, more specifically by using the negative
7
 entropy in

the belief state (e.g., Araya-Lopez et al., 2010, c.f., Eq. 2.11):

 𝜙(𝑏) = 1.0 + ∑ 𝑏(𝑠) log|S| 𝑏(𝑠)𝑠∈𝑆 (3.6)

Alternatively, an agent can quickly estimate its overall certainty by considering

the probability assigned to the most likely environment state in the belief state:

 𝜙(𝑏) = max𝑠∈𝑆 𝑏(𝑠) (3.7)

7
 We consider the negative of the entropy since entropy measures uncertainty, which is the reciprocal of

certainty.

www.manaraa.com

63

As the agent’s overall certainty increases, so too does the probability assigned to

the most likely state, so this potential function can serve as a good proxy for overall

certainty. This potential function exploits another possible property of the POMDP and

belief state in order to speed up computation. That is, this function is especially

advantageous in large, complicated domains where the state space in a POMDP is

represented as a factored state space comprised of multiple state variables: 𝑆 = 𝑆1 × 𝑆2 ×

… × 𝑆𝑚 (c.f., Section 3.4.1.2 for an example used in our experiments). In a factored state

space, a belief state can be represented more compactly by a set of conditional probability

distributions between variables. Exploiting the structure of these conditional probability

distributions can sometimes be more efficient than dealing with the entire joint

probability distribution, allowing the most likely state to be identified with lower

computational complexity than finding the entropy of the belief state (Eq. 3.6) or some

other property of a belief state that requires iterating over all possible states.

Of note, this type of potential function is very closely related to belief-based

rewards proposed by Araya-Lopez et al. (2010), which directly reward the agent based on

measurable qualities of belief states (including Eq. 3.6). However, there is both (1) a lack

of theoretical understanding of the impact on agent policies from belief-based rewards,

which we provide (in the next section) by including such measures as potential functions

within PBRS, and (2) a lack of empirical evidence of their usefulness on POMDP

benchmarks, which we provide in the context of PBRS in Section 3.5.

Potential Function Type 3 (Belief Prioritization): Additionally, since belief states

represent both (1) an agent’s knowledge about the current state of the environment, and

(2) a sufficient statistic describing an agent’s history of observations (Kaelbling, Littman,

www.manaraa.com

64

& Cassandra, 1998), they can be used to determine preferential orderings on an agent’s

actions and beliefs, which can be encoded in a potential function. In some applications, a

domain expert might have some knowledge about strategies for plans that could be used

to achieve an agent’s goals, but specific details about how to implement those strategies

could be lacking. That is, an expert might know that to achieve its goal, the agent needs

particular knowledge about particular states (e.g., that the state is either highly likely or

unlikely) before it can complete its task or learn about another particular state. Or the

expert might know that certain observations are beneficial, but it is unknown how to

achieve those observations. In either case, a potential function can assign higher value to

belief states that include certain knowledge (e.g., a particular state is highly likely or

unlikely) or are only reachable after certain observations.

This is a way of encoding domain expertise about agent beliefs that strategically

guides the agent to achieve certain beliefs before others, without necessarily requiring

prior knowledge about how to tactically achieve those beliefs. In turn, this approach

possibly speeds up an agent’s knowledge acquisition so that it can accomplish tasks and

goals faster, requiring less planning and achieving faster and greater reward

accumulation.

For example, consider a robotic agent
8
 responsible for gathering information

about the quality of a set of rocks 𝑟 ∈ 𝑅. The agent’s goal is to determine with near

perfect certainty whether each rock is good or bad before moving on to another area of

interest. In this situation, a potential function could assign higher priority to belief states

that reflect histories where the agent has tested every rock and determined whether each

8
 This example is based on the RockSample benchmark problem described in more detail in Section 3.4.1.2

and used in our experimental study evaluating the empirical performance of PBRS for online POMDP

planning.

www.manaraa.com

65

is good or bad in order to guide the agent to take actions that perform the necessary

sensing as quickly as possible. Assuming a binary state variable for each rock

(representing a good or bad state), the agent’s belief state would be almost perfectly

certain a rock was good if 𝑏(𝑟) > 0.99 and almost perfectly certain the rock was bad if

𝑏(𝑟) < 0.01. Then the potential function:

 𝜙(𝑏) = {
−1000 if {𝑟 ∈ 𝑅 | 0.01 < 𝑏(𝑟) < 0.99} ≠ ∅
 0 else

 (3.8)

represents a potential function that prioritizes beliefs (by penalizing beliefs representing

histories where the agent has not tested and determined the state of every rock), thereby

encouraging the agent to perform its sensing as soon as possible. Moreover it does so

without directly explaining to the agent how to do so, and thus represents strategic

(instead of tactical) advice.

Potential Function Type 4 (Approximation of Optimal Value Function): Finally,

since potential functions are equivalent to leaf evaluation heuristics in planning (Sorg,

Singh, & Lewis, 2011), the optimal potential function is the (domain-dependent, infinite

horizon) optimal value function 𝑉∗(𝑏) = 𝑉(𝑏, 𝜋∗) under the (infinite horizon) optimal

policy 𝜋∗, since this function exactly measures the future rewards earned from a belief

state when following the optimal policy in the agent’s particular application. Thus, such

a potential function contains exactly the information missing from approximate planning,

overcoming the problems addressed in this chapter. However, such optimal policies and

value functions are rarely computable or known in practice (or else we would not need

techniques such as PBRS in the first place), so the best we can often do is to approximate

these values.

www.manaraa.com

66

Within the heuristic search online POMDP algorithm literature (e.g., Ross &

Chaib-draa, 2007; Ross et al., 2008; Zhang & Chen, 2012), it is common to approximate

𝑉∗(𝑏) using upper and lower bounds on the value function: 𝑉(𝑏) and 𝑉(𝑏), respectively,

with 𝑉(𝑏) ≤ 𝑉∗(𝑏) ≤ 𝑉(𝑏), frequently employed as leaf evaluation heuristics (e.g., Ross

et al., 2008). These approximations are calculated using policies 𝜋𝐹𝐼𝐵 and 𝜋𝐵𝑙𝑖𝑛𝑑 formed

offline using algorithms such as Fast Informed Bound (FIB) and Blind (Hauskrecht,

2000), such that 𝑉(𝑏) = 𝑉(𝑏, 𝜋𝐹𝐼𝐵) and 𝑉(𝑏) = 𝑉(𝑏, 𝜋𝐵𝑙𝑖𝑛𝑑). With these

approximations, we can then define potential functions 𝜙(𝑏) = 𝑉(𝑏) and 𝜙(𝑏) = 𝑉(𝑏).

The tighter the bounds (depending on the application), the better these approximations

estimate the optimal value function and thus better guide the agent to optimal rewards.

By using 𝑉(𝑏) and/or 𝑉(𝑏) as potential functions, PBRS is able to include the key

heuristic information used to guide planning in state-of-the-art heuristic functions without

limiting the breadth of planning, and thus not leave the agent in possibly dangerous

situations where it reaches a belief state for which it has performed minimal advance

planning. Of note, this type of potential function does require offline computations, so

this type has the same pre-deployment costs associated with other online POMDP

planning approaches discussed in Section 3.2.1, which could be problematic in large,

complex real-world problems.

Discussion: Overall, potential functions over belief states can include information (1)

about individual states (Type 1, as previously considered with PBRS in RL and MDP

planning), (2) about direct estimations of future rewards from a belief state (Type 4, as

previously considered with leaf evaluation heuristics), and/or (3) about belief states

themselves independent of individual states, in both domain-independent and domain-

www.manaraa.com

67

dependent manners (Types 2 and 3). This enables a richer set of information to be

embedded during reward shaping for guiding online POMDP planning towards greater

future rewards than previously considered in the PBRS literature.

Moreover, amongst the two novel types of potential functions (Types 2 and 3)

discovered in this research, reflecting on (1) agent knowledge to determine how to act

(e.g., measuring the quality of knowledge about the current state of the environment as

indicated by certainty measures, Eqs 3.6-3.7) or (2) the history of the agents’ interactions

with the environment (e.g., through priority orderings on belief states both currently

experienced and soon reachable) both represent metareasoning methods for improving

general reasoning in POMDPs with interesting potential applications in many domains

(e.g., better information gathering in active sensing applications).

Comparing PBRS with other types of approaches to online POMDP planning, we

see that shaping rewards is advantageous because the shaped amount encourages the

agent to place higher value on action sequences that can potentially lead to higher future

rewards, including beyond the planning horizon. Thus, planning with a potential function

can allow the agent to estimate cumulative, future rewards (or at least maximize

indicators possibly correlated to large future rewards, such as belief certainty) in order to

better evaluate the long term values of taking different actions while planning only within

short finite horizons without having to spend the limited time on deep planning. As a

result of these time savings, the agent can instead maintain a breadth of planning to avoid

the pitfalls identified in Section 3.1, such as suboptimal finite horizon planning due to not

considering all belief states, and avoiding reaching dangerous or undesirable situations

with no forethought on what to do or how to reach a better situation in order to eventually

www.manaraa.com

68

achieve its goals. Moreover, implicitly estimating future, cumulative rewards can

possibly achieve superior action selection than spending time explicitly building such

estimates with depth-focused planning, if the agent faces a problem where very long

sequences of actions are required to reach the goal from its current situation, and there is

not enough time to plan for such a long sequence, even with depth-focused approaches.

Additionally, when comparing our proposed PBRS approach to other types of

online POMDP planning, we note that there is a distinct difference in the way the

potential function values are considered versus (1) how heuristic function values are used

in heuristic search methods, or (2) how probabilities and reward estimations are used in

Monte Carlo search methods. In our proposed approach, potential function values are

never used to control planning – they are not used to guide which belief states are

expanded in the policy tree at any point in time during planning. In heuristic search

methods, on the other hand, the heuristic values calculated for each belief state do indeed

determine which belief state is expanded next, in order to guide depth-focused planning,

by selecting some belief states for which to plan and excluding others. Likewise, in

Monte Carlo search methods, the calculated probabilities for transitions between belief

states and reward estimations are used to control how the plan is expanded in a depth-

focused fashion. Instead, in our approach, we propose performing a simple breadth-first

search (BFS) to consider all belief states within the short, finite horizon, which does not

require special control of plan expansion, in order to maintain the breadth of planning and

achieve the benefits previously described.

www.manaraa.com

69

That is, the reward shaping performed by our inclusion of potential functions does

not cause some belief states to be considered or excluded during planning
9
 (as controlled

by heuristic functions and random sampling), but instead changes the evaluation of the

value of action sequences by adding domain-dependent or domain-independent

information about belief states reached by those action sequences in order to place greater

value on policies that have the potential to achieve greater long term, cumulative rewards,

even if those action sequences would not be considered optimal under the short, finite

horizon used for planning with only the original reward function. In the next subsection,

we provide theoretical results illustrating how the evaluation of the value of policies is

changed with reward shaping, as well as the benefits of this change.

Finally, comparing PBRS to the leaf evaluation heuristics, we note that although

the two approaches are functionally equivalent (Sorg, Singh, & Lewis, 2011), there are

still advantages to studying and employing PBRS for online POMDP planning. First,

PBRS and its mathematical framework (especially Eqs. 3.3-3.4) are the natural extension

of leaf evaluation heuristics to anytime online planning algorithms. That is, such

algorithms might not know in advance how long they will have to run, and instead must

be capable of both (1) returning a plan at any point in time, and (2) continually running as

more time is allotted to improve the quality of the plan calculated. Thus, an anytime

online planning algorithm might not know in advance when it will stop. In turn, it will

not know in advance which nodes will be leaves in the final policy tree, so it will not

necessarily know where to apply the leaf evaluation heuristics. The difference function

9
 On the other hand, if we used potential function values to determine how to expand plans, then they

would simply represent heuristic functions and the result would be a standard heuristic search algorithm.

Since our potential functions are used instead for the evaluation of action values, potential functions are

orthogonal to heuristic functions.

www.manaraa.com

70

(Eq. 3.4) in PBRS incrementally considers each node to be a leaf (and is evaluated with a

potential function as a leaf evaluation heuristic), then removes that additional shaped

value when a node in the policy tree ceases to be a leaf (as the tree is expanded while

time is still allocated for planning). Therefore, the mathematical framework for PBRS

defines the calculation procedure for employing leaf evaluation heuristics in anytime

online planning algorithms, and the theoretical analyses below informs us on how both

PBRS and leaf evaluation heuristics would perform in anytime online planning. Second,

unlike the leaf evaluation heuristics commonly used in the literature (our Type 4 potential

functions), the first three potential function types proposed above do not require any

precomputation before operating in the environment. Thus, an agent using PBRS can

operate without having to do any work in advance, which is important when (1) the

problem domain is very large and precomputations are prohibitively expensive, or (2) the

agent must be quickly reconfigured to deploy to multiple environments (e.g., search and

rescue robotics).

3.3.2. Impact of PBRS on Online Planning

Because incorporating PBRS into online POMDP planning involves shaping the

rewards the agent wants to earn, the policies formed using shaped or unshaped rewards

could be different. This provides us with a dilemma. On the one hand, due to time

constraints in online planning, we want to find better policies with PBRS since any policy

found is only optimal over the finite horizon used for planning, and thus only

approximately optimal over the infinite horizon. As such, the policies found during

planning can suffer from over- and under-estimation problems (which PBRS is intended

to address), as described in Section 3.2.1. On the other hand, since PBRS entails

www.manaraa.com

71

maximizing shaped rewards with the addition of the potential function, we do not want to

sacrifice the ability to optimize the original reward function 𝑅 over the long run (i.e.,

infinite horizon), which is, after all, the ultimate goal of the agent.

To better understand the relationship between the value of policies with respect to

shaped (with PBRS) and unshaped (original) rewards, we evaluate these values from the

theoretical perspective. We follow a similar approach taken to understand the values of

policies with and without PBRS in RL (e.g., Asmuth, Littman, & Zinkov, 2008).

In the following, we develop several key results. First, Lemma 3.1 derives the

difference in the valuations of an arbitrary policy both with and without reward shaping

over the finite horizons used for planning. This represents the difference between how

good a policy looks under one approach or the other. Next, Theorem 3.2 establishes the

conditions (Eq. 3.13) for which PBRS can lead the agent to a different policy than the

original reward function when performing finite horizon planning, based on the results of

Lemma 3.1. In conjunction, Remark 3.3 observes the condition (small planning horizons

𝑛) when a greater number of potential functions might lead PBRS to different policies

than planning without reward shaping. Afterwards, Theorem 3.4 considers the

relationship between (infinite horizon) optimal policies with and without reward shaping

to establish that reward shaping still causes the agent to optimize its original reward

function over the infinite horizon, in spite of working on a modified objective function.

Remark 3.5 then extends this result (based partly on the proof to Theorem 3.4) to observe

that PBRS also performs well as the planning horizon increases, regardless of the

potential function chosen. Finally, Theorem 3.6 establishes a sufficient condition for the

www.manaraa.com

72

objective function (Eq. 2.6) with shaped rewards (Eq. 3.3) to remain convex and thus still

be solvable by a wide range of POMDP solvers.

We begin by computing the difference between the values of a policy for a finite

horizon 𝑛. This captures the impact of using PBRS with online planning for short

horizons required due to time constraints.

Lemma 3.1. Let 𝑆, 𝐴, 𝛺, 𝑇, 𝑂, 𝑅, 𝑏0, 𝛾 from the definition of a POMDP be

given, and let 𝑛 ∈ ℕ be a fixed planning horizon, 𝜙 be a potential function

over belief states, and 𝜋 be a policy of action. Then the difference

between the value with PBRS 𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋) of 𝜋 starting at 𝑏0 and the

value using unshaped rewards 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋) is given by:

 𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋) − 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋) = 𝛾𝑛 ∑ 𝑃(𝑏𝑛|𝜋, 𝑏0)𝜙(𝑏𝑛)𝑏𝑛∈𝛱(𝑠) − 𝜙(𝑏0) (3.9)

Proof. For notational convenience, we denote the unshaped reward earned at each

step 𝑡 ∈ {0, 1, … , 𝑛 − 1} as 𝑅𝑡:

 𝑅𝑡 = 𝑅(𝑏𝑡, 𝑎𝑡) = 𝑟𝑡
𝑜𝑟𝑖𝑔

 (3.10)

and the shaped reward earned at each step 𝑡 as 𝑅𝑡 + 𝐹𝑡:

 𝑅𝑡 + 𝐹𝑡 = 𝑅(𝑏𝑡, 𝑎𝑡) + 𝐹(𝑏𝑡, 𝑎𝑡, 𝑏𝑡+1) = 𝑟𝑡
𝑃𝐵𝑅𝑆 (3.11)

where 𝑏𝑡 denotes the belief state after performing 𝑡 actions and 𝑎 = 𝜋(𝑏𝑡) is the action

chosen according to policy 𝜋.

As an intermediate result, consider an arbitrary history 𝐻 = {𝑏0, 𝑎0, 𝑜1, 𝑏1, … , 𝑏𝑛}

(i.e., a fixed sequence for a particular experience in the environment) consisting of (1) the

actions taken by the agent according to policy 𝜋, (2) the resulting observations, and (3)

the sequence of beliefs after making those observations. For fixed 𝑛, the value using

unshaped rewards of any policy 𝜋 according to particular history 𝐻 can be computed as

the cumulative reward series:

 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋, 𝐻) = ∑ 𝛾𝑡𝑟𝑡
𝑜𝑟𝑖𝑔𝑛−1

𝑡=0 = ∑ 𝛾𝑡𝑅𝑡
𝑛−1
𝑡=0 (3.12)

www.manaraa.com

73

and the value using shaped rewards of the same policy 𝜋:

𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋, 𝐻) = ∑ 𝛾𝑡𝑟𝑡
𝑃𝐵𝑅𝑆𝑛−1

𝑡=0

 = ∑ 𝛾𝑡(𝑅𝑡 + 𝐹𝑡)𝑛−1
𝑡=0

 = ∑ 𝛾𝑡(𝑅𝑡 + 𝛾𝜙(𝑏𝑡+1) − 𝜙(𝑏𝑡))𝑛−1
𝑡=0

 = ∑ 𝛾𝑡𝑅𝑡
𝑛−1
𝑡=0 + ∑ 𝛾𝑡+1𝜙(𝑏𝑡+1)𝑛−1

𝑡=0 − ∑ 𝛾𝑡𝜙(𝑏𝑡)𝑛−1
𝑡=0

 = 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋, 𝐻) + [∑ 𝛾𝑡𝜙(𝑏𝑡)𝑛−1
𝑡=1 + 𝛾𝑛𝜙(𝑏𝑛)] − [∑ 𝛾𝑡𝜙(𝑏𝑡)𝑛−1

𝑡=1 + 𝜙(𝑏0)]

 = 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋 , 𝐻) + 𝛾𝑛𝜙(𝑏𝑛) − 𝜙(𝑏0)

Because this result holds for arbitrary history 𝐻 starting at arbitrary 𝑏0, it will

hold for any sequence of beliefs when following policy 𝜋. Therefore, since the valuation

of a policy from a belief state is the expected value over all possible histories (Eq. 2.6),

we find that:

𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋) = 𝐸[𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋, 𝐻)]
 = 𝐸[𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋, 𝐻) + 𝛾𝑛𝜙(𝑏𝑛) − 𝜙(𝑏0)]

 = 𝐸[𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋, 𝐻)] + 𝛾𝑛𝐸[𝜙(𝑏𝑛)] − 𝐸[𝜙(𝑏0)]

 = 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋) + 𝛾𝑛 ∑ 𝑃(𝑏𝑛|𝜋, 𝑏0)𝜙(𝑏𝑛)

𝑏𝑛∈𝛱(𝑠)

− 𝜙(𝑏0) ∎

where 𝑃(𝑏𝑛|𝜋, 𝑏0) is the probability of transitioning to 𝑏𝑛 when following policy 𝜋 from

initial belief 𝑏0, considering the probabilities of the necessary state transitions and

observations required to reach 𝑏𝑛. From this result, we can subsequently find the

following theorem:

Theorem 3.2: Let 𝑆, 𝐴, 𝛺, 𝑇, 𝑂, 𝑅, 𝑏0, 𝛾 from the definition of a POMDP be

given, and let 𝑛 ∈ ℕ be a fixed (finite) planning horizon and 𝜙 be a

potential function over belief states. Then, the policy 𝜋′ optimizing 𝑉𝑃𝐵𝑅𝑆

will differ from the policy 𝜋 optimizing 𝑉𝑜𝑟𝑖𝑔 over the fixed horizon 𝑛,

provided that

 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋) − 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋′) < 𝛾𝑛 ∑ 𝜙(𝑏𝑛)[𝑃(𝑏𝑛|𝜋′, 𝑏0) − 𝑃(𝑏𝑛|𝜋, 𝑏0)]𝑏𝑛∈𝛱(𝑆) (3.13)

Proof. Consider policy 𝜋 that optimizes unshaped rewards 𝑉𝑜𝑟𝑖𝑔 over finite

horizon 𝑛. If there is another policy 𝜋′ satisfying Eq. 3.13, meaning that the difference in

www.manaraa.com

74

the value of 𝜋 and 𝜋′ under the original reward function 𝑅 is less than the difference in

the expected (discounted) potential values along the planning horizon, then:

𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋′) − 𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋)
 = [𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋′) + 𝛾𝑛 ∑ 𝑃(𝑏𝑛|𝜋′, 𝑏0)𝜙(𝑏𝑛)𝑏𝑛∈𝛱(𝑆) − 𝜙(𝑏0)]

 −[𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋) + 𝛾𝑛 ∑ 𝑃(𝑏𝑛|𝜋, 𝑏0)𝜙(𝑏𝑛)𝑏𝑛∈𝛱(𝑆) − 𝜙(𝑏0)]

 = [𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋′) − 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋)] + 𝛾𝑛 ∑ 𝑃(𝑏𝑛|𝜋′, 𝑏0)𝜙(𝑏𝑛)𝑏𝑛∈𝛱(𝑆)
 −𝛾𝑛 ∑ 𝑃(𝑏𝑛|𝜋, 𝑏0)𝜙(𝑏𝑛)𝑏𝑛∈𝛱(𝑆)

 = [𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋′) − 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋)]

 +𝛾𝑛 ∑ 𝜙(𝑏𝑛)[𝑃(𝑏𝑛|𝜋′, 𝑏0) − 𝑃(𝑏𝑛|𝜋, 𝑏0)]𝑏𝑛∈𝛱(𝑆)
 > 𝛾𝑛 ∑ 𝜙(𝑏𝑛)[𝑃(𝑏𝑛|𝜋, 𝑏0) − 𝑃(𝑏𝑛|𝜋′, 𝑏0)]𝑏𝑛∈𝛱(𝑆)
 +𝛾𝑛 ∑ 𝜙(𝑏𝑛)[𝑃(𝑏𝑛|𝜋′, 𝑏0) − 𝑃(𝑏𝑛|𝜋, 𝑏0)]𝑏𝑛∈𝛱(𝑆)

 = 0

Thus, 𝜋′ achieves higher 𝑉𝑃𝐵𝑅𝑆 than 𝜋, so 𝜋 cannot optimize 𝑉𝑃𝐵𝑅𝑆 over the

finite horizon 𝑛. Therefore, planning with PBRS can result in a different policy using a

finite horizon. Moreover, provided the potential function guides the agent towards

beliefs that earn higher rewards beyond the planning horizon, PBRS could improve upon

finite horizon policies that would be found without reward shaping. ∎

Furthermore, the impact of the potential function on the valuation of a policy

using shaped rewards depends on the size of the planning horizon 𝑛. This leads us to the

following remark:

Remark 3.3: The upper bound (Eq. 3.13) on the permissible difference in

the valuations of the (finite horizon) optimal policies with and without

reward shaping is greater as the finite planning horizon 𝑛 decreases,

making it easier to find a potential function 𝜙 that satisfies Eq. 3.13 when

the planning horizon is small.

Recall that the discount factor is restricted such that 𝛾 ∈ [0, 1). Thus, as 𝑛

decreases, 𝛾𝑛 increases. Hence, the resulting greater upper bound on the differences

between valuations permits a larger number of different policies to optimize each

objective function (Eqs. 3.9, 3.13 and Lemma 3.1) over the finite horizon 𝑛, so planning

www.manaraa.com

75

with PBRS is more able to find a different policy than planning without reward shaping

when the horizon is short. Therefore, provided a suitable potential function, PBRS can

be most beneficial when it is most necessary (i.e., when planning without PBRS is at

greatest risk of being suboptimal (over the infinite horizon) due to short horizons and

limited planning time).

Next, we prove that planning with PBRS does not sacrifice optimality over the

infinite horizon with respect to the original reward function 𝑅, which ultimately the agent

wants to maximize. That is, a policy is optimal (without finite horizon approximation)

with PBRS if and only if it is also optimal without reward shaping using just the original

rewards. Therefore, even though using shaped or unshaped rewards can find different

policies for short horizons, using PBRS also optimizes the original reward function 𝑅

(over the infinite horizon) and is working towards the agent’s ultimate goal.

Theorem 3.4: Let 𝑆, 𝐴, 𝛺, 𝑇, 𝑂, 𝑅, 𝑏0, 𝛾 from the definition of a POMDP be

given, and let 𝜙 be a potential function over belief states. Then, a policy

𝜋∗ is optimal (over the infinite horizon) with reward shaping using PBRS

if and only if 𝜋∗ is also optimal (over the infinite horizon) without reward

shaping.

Proof: Let 𝜋 be any policy. From Lemma 3.1, the value of this policy with PBRS

over the infinite horizon is:

 𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋) = 𝐸[∑ 𝛾𝑡𝑟𝑡
𝑃𝐵𝑅𝑆∞

𝑡=0] = lim𝑛→∞ 𝐸[∑ 𝛾𝑡𝑟𝑡
𝑃𝐵𝑅𝑆𝑛−1

𝑡=0]

 = lim𝑛 →∞[𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋) + 𝛾𝑛𝐸[𝜙(𝑏𝑛)] − 𝜙(𝑏0)]

 = 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋) − 𝜙(𝑏0) + lim𝑛→∞ 𝛾𝑛𝐸[𝜙(𝑏𝑛)]
 = 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋) − 𝜙(𝑏0)

since 𝛾 ∈ [0,1) and thus lim𝑛→∞ 𝛾𝑛+1 = 0. Moreover, 𝜙(𝑏0) is constant since initial

belief state 𝑏0 is fixed. Thus, any policy 𝜋∗ that optimizes 𝑉𝑃𝐵𝑅𝑆 over the infinite

horizon also optimizes 𝑉𝑜𝑟𝑖𝑔, and vice-versa. Therefore, 𝜋∗ is optimal over the infinite

www.manaraa.com

76

horizon with PBRS if and only if it is also optimal over the infinite horizon for the

original rewards. ∎

From the perspective of finite horizon policies (which the agent is required to

calculate to approximate the infinite horizon due to computational constraints), Theorem

3.4 and its proof result in the following important implication:

Remark 3.5: Planning with PBRS also results in earning greater

(unshaped) reward as the planning horizon increases (or equivalently,

with more planning time), even though it is optimizing a different objective

function than the original reward function.

Both the proof for Theorem 3.4 and Lemma 3.1 imply that the valuations of

policies with and without reward shaping become closer and closer as the planning depth

increases. Thus, the policies chosen by each method (with or without reward shaping)

also become more similar since these policies maximize their respective valuations.

Because approximate planning without reward shaping generally results in better policies

as the planning depth increases (since more information is added to the estimation of

cumulative, future rewards), this implies that the policies formed with PBRS will also

improve with respect to maximizing the original reward function.

Combined with Remark 3.3, this implies that PBRS is beneficial to the agent not

only when the planning horizon is small (provided a good potential function), but also as

the planning horizon increases (regardless of potential function).

Finally, we derive the following theorem that is important for determining when

pre-existing POMDP planning solvers are compatible with PBRS.

Theorem 3.6: Let 𝑆, 𝐴, 𝛺, 𝑇, 𝑂, 𝑅, 𝑏0, 𝛾 from the definition of a POMDP be

given, and let 𝜙 be a potential function over belief states. Provided that 𝜙

is convex, the objective function solved by the agent (Eq. 2.6) remains

convex and can be solved by the traditional set of POMDP solvers.

www.manaraa.com

77

Proof. Assume that 𝜙 is indeed convex. Then, Eq. 3.3 is the linear combination

of convex functions (Eq. 2.4 is also convex) (Boyd & Vandenberghe, 2004). Thus, the

valuation function (Eq. 2.6) remains convex, as proven by Araya-Lopez et al. (their

Theorem 3.1 in (2010)) (originally established outside the context of PBRS). Therefore,

shaped rewards with PBRS can also be optimized by a wide range of POMDP solvers

relying on convexity, not just those considered in this chapter. ∎

We note here that many of the potential functions provided as examples in this

chapter (e.g., Eq. 3.6 and 3.7 above) are indeed convex.

Summary. To summarize our theoretical results, we observe that Lemma 3.1

defines the difference in the evaluation of a policy both (1) with reward shaping using

PBRS (𝑉𝑃𝐵𝑅𝑆) and (2) without reward shaping that considers only the original reward

function 𝑅 (𝑉𝑂𝑟𝑖𝑔). In turn, Theorem 3.2 provides us with a necessary condition for

when a policy would be evaluated as having higher value with PBRS than without. That

is, this condition establishes when a different policy might be favored and returned by the

planning algorithm, instead of the policy that is optimal—considering only the original

reward function—for the small, finite horizon 𝑛 yet possibly suboptimal over the long

run. Remark 3.3 then notes that the condition of Theorem 3.2 is looser for the smallest

planning horizons, making it easier for PBRS to favor a different policy that could be

closer to optimal over the long run than the small, finite-horizon optimal policy. This

should cause us to observe the most impactful benefits on agent performance from PBRS

under the tightest time constraints on planning. Theorem 3.4 and Remark 3.5, on the

other hand, explores the opposite direction and establishes that as the planning horizon

increases, the favored policies found with PBRS also optimize the long term, cumulative

www.manaraa.com

78

rewards of the agent, which is the agent’s ultimate goal. This is true, even though the

agent is directly optimizing a slightly different objective function. This should cause us

to observe continued good performance from PBRS as planning constraints are relaxed.

Finally, Theorem 3.6 establishes that POMDP planning algorithms relying on convexity

in the value function to efficiently find optimal policies will also efficiently find optimal

policies under PBRS.

Of note, most of these theoretical results exploit the fact that reward shaping

under PBRS takes the form of the difference of potential functions (Eqs. 3.3-3.4).

Without this difference and instead using arbitrary reward shaping (e.g., simply adding

additional value at each node of the policy tree), the telescoping sums would disappear

from the proofs. Without the telescoping sums, (1) we would not be able to bound the

difference of the evaluation of a policy with and without reward shaping (Theorem 3.2),

and we need this bound for Remark 3.3 describing the usefulness of PBRS with small

planning horizons, which is important since we are considering time constrained, finite

horizon planning that must stop before finding an optimal (infinite horizon) policy, and

(2) we could not establish that as the planning horizon increases, the policy optimizing

PBRS also optimizes the original reward function, which would in turn affect the ability

of planning with PBRS to prefer policies that maximize long term, cumulative rewards.

3.4. Experimental Setup

To evaluate the performance of using PBRS to improve online POMDP planning,

we conducted an empirical study that compares agent performance with and without

PBRS (using the potential functions summarized in Table 3.2) in three benchmark

www.manaraa.com

79

POMDP planning problems described below: (1) Tag (Pineau, Gordon, & Thrun, 2003),

(2) RockSample (Smith & Simmons, 2004), and (3) AUVNavigation (Ong et al., 2010).

These three benchmarks were chosen for our experimental study for the following

reasons. First, they are commonly used across the POMDP literature, either together

(e.g., Ong et al., 2010; Zhang & Chen, 2012) or at least in some combination (e.g.,

Pineau, Gordon, & Thrun, 2003; Ross et al., 2008; Silver & Veness, 2010; Somani et al.,

2013). Thus, they are relatively well understood. Second, they represent a varying range

of problems: (1) Tag is a relatively small problem (i.e., a low number of states, actions,

and observations) with high levels of uncertainty, but a relatively simple required

behavior to solve the problem, (2) RockSample is a larger problem than Tag and one for

which upper and lower bound estimates provide strong clues on how to behave, and (3)

AUVNavigation is an even larger problem (especially with two orders of magnitude

larger observation space than Tag or RockSample) with a very high amount of

uncertainty and a difficult sequence of behavior required to solve the problem. Thus,

they represent very different environments. Moreover, AUVNavigation both: (a) requires

a long sequence of information gathering then movement actions to reach the ultimate

goal state, and (b) contains dangerous situations that cause the agent to be unable to ever

accomplish its goal, both of which were hypothesized in Section 3.1 to be problematic for

depth-focused planning algorithms and could benefit from breadth-focused planning with

implicit future reward estimations, as accomplished by PBRS for online POMDP

planning. We limit our study to considering only three benchmarks for two reasons: (1)

much of the POMDP literature considers a similar number of benchmarks (e.g., Ross et

al., 2008; Somani et al., 2013; Zhang & Chen, 2012), and (2) due to the

www.manaraa.com

80

comprehensiveness of our experimental setup for each benchmark, resulting in much time

required to both (i) run the experiments for each benchmark (c.f., the start of Section 3.5)

and (ii) implement and test many different potential functions on each benchmark. For

comparison and easy reference, we summarize the potential functions considered in each

benchmark in Table 3.2.

Table 3.2: Summary of Potential Functions Used in Each Benchmark Problem
Potential

Function

Type Tag RockSample AUVNavigation

MBD Type 1: Domain-Dependent

Information from Expected State

Potential

Eq. 3.14

CD

Eq. 3.15

GD

Eq. 3.17

Entropy Type 2: Domain-Independent

Information

Eq. 3.6

TopBelief Eq. 3.7

NoExit Type 3: Belief Prioritization Eq. 3.16

EMBD

Types 1 + 2: Combination of

Domain-Dependent &

Domain-Independent Information

Eq. 3.6

+ Eq. 3.14

TBMBD Eq. 3.7

+ Eq. 3.14

ECD Eq. 3.6

+ Eq. 3.15

TBCD Eq. 3.7

+ Eq. 3.15

EGD Eq. 3.6

+ Eq. 3.17

TBGD Eq. 3.7

+ Eq. 3.17

NoExitCD Types 1 + 3: Combination of

Domain-Dependent Information &

Belief Prioritization

 Eq. 3.15

+ Eq. 3.16

HBGD Eq. 3.18

NoExitE
Types 2 + 3: Combination of

Domain-Independent Information &

Belief Prioritization

 Eq. 3.6

+ Eq. 3.16

NoExitTB Eq. 3.7

+ Eq. 3.16

NoExitECD

Types 1 + 2 + 3: Combination of

Domain-Dependent &

Domain-Independent Information &

Belief Prioritization

 Eq. 3.6

+ Eq. 3.15

+ Eq. 3.16

NoExitTBCD Eq. 3.7

+ Eq. 3.15

+ Eq. 3.16

Upper
Type 4: Approximation of Optimal

Value Function

𝑉(𝑏) = 𝑉(𝑏, 𝜋𝐹𝐼𝐵)

Lower
𝑉(𝑏) = 𝑉(𝑏, 𝜋𝐵𝑙𝑖𝑛𝑑)

www.manaraa.com

81

3.4.1. Benchmark Problems

3.4.1.1. Tag

The first benchmark problem we consider is Tag (Pineau, Gordon, & Thrun,

2003), in which a robotic agent (the tagger) plays laser tag with an opponent. Both

agents are randomly placed in a 2D grid consisting of 29 locations and the tagger agent’s

task is to find and tag the opponent, whereas the opponent tries to prolong the game by

moving away from the tagger. Both agents always know their own location and the

opponent knows where the tagger is at all times, but the tagger can only observe the

opponent when they are in the same cell. The tagger agent earns a penalty of -1 for

moving in each cardinal direction (North, South, East, and West) to find its prey, a larger

penalty of -10 for trying to tag the opponent without being in the same cell, and a reward

of +10 for successfully tagging the opponent, which ends the game. The tagger agent’s

discounted rewards are maximized by finding and tagging the opponent as fast as

possible.

Altogether, Tag represents a relatively small benchmark problem, only consisting

of 870 states, 5 actions (movement and tagging), and 2 observations (𝑇𝑟𝑢𝑒 if the tagger

and opponent are in the same cell, else 𝐹𝑎𝑙𝑠𝑒). However, the problem is highly uncertain

as the tagger can only identify the opponent’s location if they are in the same cell, else it

must estimate where the dynamic opponent is as it moves away from the tagger. As such,

the distance of the tagger from the end of the game can be quite long and dynamically

changes as both agents move through the grid. Therefore, the actual horizon for the

problem can be particularly long, and time constrained planning can lead to suboptimal

actions.

www.manaraa.com

82

To improve online, short horizon planning in Tag, we consider seven potential

functions representing different domain-independent and -dependent knowledge pointing

the agent to future rewards beyond the planning horizon:

 Entropy, using a domain-independent measure of the certainty in the agent’s belief,

following Eq. 3.6

 TopBelief, using another domain-independent measure of the certainty in the agent’s

belief represented by Eq. 3.7, which is similar to Eq. 3.6, but (1) focuses on certainty in a

single state (the most believed state), rather than across the entire belief state and (2)

exploits the factored state space (fully observable tagger location vs. partially observable

opponent location) to reduce computation

 MaxBeliefDistance (MBD), using domain-dependent information to assign greater

potential to belief states closer to the most likely location of the opponent, thus

motivating the agent to move towards the opponent and end the game as fast as possible,

hopefully minimizing incurred penalties and maximizing rewards:

 𝜙(𝑏) =
1

𝐸[𝑑(𝑜,𝑙)]+1
 (3.14)

where 𝑜 is a possible opponent location, 𝑙 is the agent’s location, 𝑑 measures Euclidian

distance between 𝑜 and 𝑙, and 𝐸[𝑑(𝑜, 𝑙)] is the expected distance based on all possible

opponent locations in belief state 𝑏.

 EMBD, which sums Entropy (Eq. 3.6) and MaxBeliefDistance (Eq. 3.14) to combine

domain-independent and domain-dependent information in the same potential function

 TBMBD, which sums TopBelief (Eq. 3.7) and MaxBeliefDistance (Eq. 3.14) to also

combine domain-independent and domain-dependent information in the same potential

function

 Upper, which uses 𝑉(𝑏) calculated using 𝜋𝐹𝐼𝐵 formed using the Fast Informed Bound

algorithm (Hauskrecht, 2000) as an approximation of the optimal value function, and

 Lower, which uses 𝑉(𝑏) calculated using 𝜋𝐵𝑙𝑖𝑛𝑑 formed using the Blind algorithm

(Hauskrecht, 2000) as another approximation of the optimal value function

3.4.1.2. RockSample

The second benchmark problem considered in our experimental setup is

RockSample (Smith & Simmons, 2004). In RockSample, an agent navigates a remote

world represented by a 2D grid of size 𝑔 × 𝑔 to sample from 𝑘 rocks. The goal of the

agent is to determine which rocks are good, then sample only those rocks. Afterwards,

the agent exits by moving to a special location off the grid. To accomplish its goals, the

www.manaraa.com

83

agent can perform 𝑘 + 5 actions: move in any of the four cardinal directions (North,

South, East, West), check the quality at one of each of the 𝑘 rocks, or sample the rock at

its current location. To determine which actions to take, the agent considers a factored

state space consisting of: (1) its fully observable current location, and (2) the hidden

quality of each rock (from the set {𝐺𝑜𝑜𝑑, 𝐵𝑎𝑑}). Checking a rock returns a noisy

observation about the quality of the rock (also from the set {𝐺𝑜𝑜𝑑, 𝐵𝑎𝑑}), where the

observation’s accuracy is greater the closer the agent is to the rock
10

. Sampling a rock

changes the state of the rock to 𝐵𝑎𝑑 (indicating it can no longer be sampled). The agent

earns a reward of +10 for sampling a good rock, -10 for sampling a bad rock, and +10 for

exiting the grid. All other actions earn zero reward. The agent’s discounted rewards are

maximized by sampling all (and only) good rocks and exiting as fast as possible.

We use the common setting 𝑔 = 7 and 𝑘 = 8 (e.g., Ross et al., 2008; Somani et

al., 2013; Zhang & Chen, 2012) that results in a POMDP with 12,585 states, 13 actions,

and 2 observations. This problem is larger than Tag, but less dynamic: the problem

always ends with the agent reaching the same state (exiting the grid), and the

environment does not change as the agent moves around. Thus, it presents a different set

of challenges for time constrained planning, including a broader search tree (due to more

possible actions) and deeper required activity to accomplish all the agent’s goals

(sampling as many good rocks as exist in the environment), but identifying the goal state

is less challenging, making it easier to achieve goal directed behavior.

10

 To increase the complexity of the RockSample benchmark and make it more suitable for our

experimental study by making it a little more uncertain like the other benchmark problems considered in

this research, we increased the uncertainty in the observations returned when checking rocks by decreasing

the half-efficiency distance of sensing from 20 to 1. This is similar to changes made in other experimental

studies, including the similar FieldVisionRockSample considered in (Ross et al., 2008; Zhang & Chen,

2012).

www.manaraa.com

84

To improve online planning in RockSample, we consider 13 potential functions

representing different domain-independent and -dependent knowledge pointing the agent

to future rewards beyond the planning horizon. Some are reused from Tag (Entropy,

TopBelief, Upper, and Lower), whereas others are unique to RockSample:

 ClosestDistance (CD), using domain-dependent information to assign greater potential

to belief states closer to uncertain rocks where the agent will achieve greater accuracy

and thus most immediate belief improvement:

 𝜙(𝑏) = {
−

1

2𝑔
min𝑟∈𝑅[𝑑(𝑟, 𝑙) + 1] if 𝑅 ≠ ∅

 0 if 𝑅 = ∅
 (3.15)

where 𝑅 = {𝑟 | 0.01 < 𝑏(𝑟) < 0.99} is the set of rocks with uncertain quality, 𝑙 is the

agent’s location, and 𝑑 measures Euclidian distance between 𝑟 and 𝑙.

 NoExit, prioritizing beliefs reflecting more certain knowledge about rocks before

exiting to avoid neglected sampling due to myopic planning (similar to Eq. 3.8 example

from Section 3.3.1):

 𝜙(𝑏) = {
−1000 if 𝑅 ≠ ∅ ∧ 𝑙 = exit
 0 else

 (3.16)

 ECD, which sums Entropy (Eq. 3.6) and ClosestDistance (Eq. 3.15) to combine

domain-independent and domain-dependent information in the same potential function

 TBCD, which sums TopBelief (Eq. 3.7) and ClosestDistance (Eq. 3.15) to also

combine domain-independent and domain-dependent information in the same potential

function

 NoExitE, which sums Entropy (Eq. 3.6) and NoExit (Eq. 3.16) to combine domain-

independent information and belief prioritization in the same potential function

 NoExitTB, which sums TopBelief (Eq. 3.7) and NoExit (Eq. 3.16) to also combine

domain-independent information and belief prioritization in the same potential function

 NoExitCD, which sums ClosestDistance (Eq. 3.15) and NoExit (Eq. 3.16) to combine

domain-dependent information and belief prioritization in the same potential function

 NoExitECD, which sums Entropy (Eq. 3.6), ClosestDistance (Eq. 3.15), and NoExit

(Eq. 3.16) to combine domain-independent and domain-dependent information, as well as

belief prioritization, in the same potential function

 NoExitTBCD, which sums TopBelief (Eq. 3.7), ClosestDistance (Eq. 3.15), and

NoExit (Eq. 3.16) to also combine domain-independent and domain-dependent

information, as well as belief prioritization, in the same potential function

www.manaraa.com

85

3.4.1.3. AUVNavigation

The final benchmark problem considered in our experimental setup is

AUVNavigation (Ong et al., 2010). In AUVNavigation, a robotic submarine agent is

randomly placed on one side of a 20 × 7 × 4 3D underwater grid and must navigate

through a set of rock obstacles to either of two known goal locations on the other side of

the grid. The agent can Stay in its current position, turn Left, Right, Up, or Down to

change its orientation, or it can move Forward along its orientation towards a desired

location. Currents underwater also move the agent with low probability, resulting in

stochastic location changes, whether or not the agent intended to move. The agent has

sensors that always perfectly observe the agent’s depth and orientation in the grid, but its

location in the 2D plane is uncertain. Thus, navigating through the rocks to reach the

goal is quite challenging. The agent can move to the surface of the water where it

automatically uses a GPS sensor to perfectly determine its location, but this incurs a

moderate cost of -50. Otherwise moving through the grid incurs a penalty of -1, -1.44, or

-1.73, depending on its orientation (with higher cost for moving diagonally and changing

depths in the grid), whereas Staying or changing orientation earns zero reward. The

agent incurs a large penalty of -500 for hitting a rock and an even larger reward of +5000

for reaching a goal location, each of which result in a terminal state that ends execution.

The agent’s discounted rewards are maximized by reaching the goal location as fast as

possible while minimizing costs incurred for spending time on the surface.

Altogether, AUVNavigation represents a very challenging benchmark problem

compared to the other two benchmarks. Whereas the number of states and actions

(13,537 and 6, respectively) in this problem is similar to RockSample, the number of

www.manaraa.com

86

observations (144) is much greater, increasing the size of the POMDP and the breadth of

the planning tree, and the uncertainty is also much greater due to the lack of full

observability of the agent’s location. Thus, AUVNavigation is the largest and most

complex benchmark considered in our experiments. Due to this uncertainty and

complexity, AUVNavigation can be viewed as containing three sub-problems in three

stages: (1) determining the agent’s location on the far side of the grid, (2) navigating

through the many dangerous rock obstacles (requiring high certainty in the agent’s

location), and (3) finding a path beyond the obstacles to one of the goal locations.

Furthermore, the actual horizon for this problem is quite long and requires more memory

than an agent can afford for full breadth planning (due to exponential growth in the

planning tree), requiring over 20 actions just to move the agent from its initial location to

a goal location without accounting for the number of actions required to resolve its initial

location uncertainty. Since a positive reward signaling a good planning path to the agent

only occurs when it reaches the goal (after at least 20 steps), time constrained planning is

very difficult in this domain since there are no intermediate positive signals to guide the

agent towards the goal state. As a result, PBRS is possibly a beneficial approach for this

benchmark problem since potential functions can provide such intermediate positive

signals, but the potential functions need to be able to account for the different stages of

the problem to successfully guide the agent towards its goal, which could require more

complex potential functions than the other two benchmark problems.

To improve online planning in AUVNavigation, we consider eight potential

functions representing different domain-independent and -dependent knowledge pointing

the agent to future rewards beyond the planning horizon. Some are reused from Tag and

www.manaraa.com

87

RockSample (Entropy, TopBelief, Upper, and Lower), whereas others are unique to

AUVNavigation:

 GoalDistance (GD), using domain-dependent information to assign greater potential to

belief states closer to the nearest of the two goal locations where the agent has less

distance to travel (and further movement cost to incur) to reach its goal:

 𝜙(𝑏) =
1

𝐸[𝑑(𝑔,𝑙)]+1
 (3.17)

where 𝑙 is a possible agent location, 𝑔 is the nearest goal location to 𝑙, 𝑑 measures

Euclidian distance between 𝑙 and 𝑔 (equal to the maximum possible distance if 𝑙 is also a

rock location to encourage the agent to avoid rocks), and 𝐸[𝑑(𝑔, 𝑙)] is the expected

distance based on all possible agent locations in belief state 𝑏.

 EGD, which sums Entropy (Eq. 3.6) and GoalDistance (Eq. 3.17) to combine domain-

independent and domain-dependent information in the same potential function

 TBCD, which sums TopBelief (Eq. 3.7) and GoalDistance (Eq. 3.17) to also combine

domain-independent and domain-dependent information in the same potential function

 HighBeliefGoalDistance (HBGD), which combines prioritizing beliefs containing

high certainty in a single state, reflecting more certain knowledge about the agent’s

current location, and the domain-dependent information GoalDistance potential function

(Eq. 3.17) to help the navigate towards a goal location after resolving its own location

uncertainty:

 𝜙(𝑏) = {
1

𝐸[𝑑(𝑔,𝑙)]+1
 if max𝑠∈𝑆 𝑏(𝑠) > 0.6

 0 else
 (3.18)

3.5. Results

In this section, we analyze the results of our experiments using the benchmark

problems and potential functions outlined in the previous section and evaluate the

empirical performance of using PBRS to improve online POMDP planning.

Specifically, we evaluate performance by comparing the (infinite horizon)

cumulative, discounted rewards earned by the agent while operating in each benchmark:

 ∑ 𝛾𝑡𝑟𝑡
𝑜𝑟𝑖𝑔∞

𝑡=0 (3.19)

since this is the function the agent intends to optimize (even if it must rely on finite

horizon approximations during planning) and is the traditional measure for evaluating

POMDP planning. Please note that this measurement does not include the additional

www.manaraa.com

88

rewards from any potential function in order to provide a fair comparison between

approaches with and without reward shaping.

For PBRS, we performed full breadth planning using a randomized BFS

expansion of the planning tree using different amounts of time 𝜏 for online planning

representing different time constraints imposed on the agent’s reasoning
11

 (common to

real-world environments): 𝜏 ∈ {5, 10, 50, 100} milliseconds for Tag and RockSample

and 𝜏 ∈ {100, 500, 1000, 5000} milliseconds for the larger and more complex

AUVNavigation.

Within each benchmark, we compared for each amount of allotted time 𝜏 the

performance of planning (1) without reward shaping (Original), (2) with reward shaping

using different potential functions for each benchmark problem (summarized in Table 3.2

and described above), (3) using AEMS2 (Ross & Chaib-draa, 2007), a state-of-the-art

heuristic search algorithm, and (4) using ABDESPOT and ARDESPOT, two online

variants of a state-of-the-art Monte Carlo tree search algorithm called DESPOT (Somani

et al., 2013). Any offline planning required by the algorithms is not included in 𝜏.

Our results were averaged over 1000 runs of each problem for each planning

approach and allotted time combination (except for AUVNavigation, where we only

employed 100 runs due to its higher range of 𝜏 values). To speed up computation in each

benchmark, we used the state-of-the-art equivalent MOMDP
12

 representation (Ong et al.,

2010) for the POMDP model, as also done in the recent online POMDP planning

11

 We use a different range of allotted times 𝜏 for different problems due to the different sizes of the

POMDPs, resulting in different exponential growth of the planning trees calculated by the agents.
12

 A mixed observability MDP (MOMDP) is a special POMDP representation that factors the state space

into fully observable variables 𝒳 and partially observable variables 𝒴, such that 𝑆 = 𝒳 × 𝒴, and exploits

this factorization to simplify the transition and observation probability calculations to speed up

computation. The resulting model is equivalent (but faster) to the canonical, unfactored POMDP

representation for the same problem (Ong et al., 2010).

www.manaraa.com

89

literature (e.g., Zhang & Chen, 2012). We limited each run to 200 time steps, which

should be ample time for the agent to solve each problem (else the agent was acting

randomly and not in a goal directed fashion, and thus would probably never accomplish

its goal if left to run longer).

Because we limited planning to fixed amounts of time, all experiments per

benchmark were conducted on a fixed computer to avoid introducing variance into the

results due to differences between computers, instead of due to differences in the

algorithms’ performances that we intended to measure. Two computers were chosen for

this purpose: each possessing an Intel i5 (Haswell) 3.4 GHz Quad Core processor with

8GB of RAM (limited to one thread and 3 GB of RAM per experiment run). One

computer ran all of the Tag and RockSample experiments, while the other ran the

lengthier AUVNavigation experiments.

In the following, we analyze performance in each of the benchmarks separately:

first Tag, then RockSample, and finally AUVNavigation. Afterwards, we provide

discussions generalizing our results across benchmarks to provide a more abstract

identification of the strengths and weaknesses of each approach to online planning,

especially focusing on using PBRS.

For each problem, we first compare the performance of full breadth planning with

PBRS using the different potential functions against Original (i.e., full breadth planning

without reward shaping) to explore whether or not the different types of potential

functions truly provide implicit clues of what actions the agent should take to earn large

cumulative, future rewards beyond the agent’s planning horizon. Second, we compare

the performances of each type of potential function to try to gain insights into which

www.manaraa.com

90

Table 3.3: Results from Tag Benchmark Problem with 95% Confidence Intervals

Approach

𝝉

5 ms 10ms 50ms 100ms

Original -12.84 ± 0.55 -10.09 ± 0.54 -9.13 ± 0.51 -9.68 ± 0.50

Entropy -12.47 ± 0.56 -10.64 ± 0.54 -11.41 ± 0.54 -9.57 ± 0.51

TopBelief -13.60 ± 0.54 -10.37 ± 0.57 -9.79 ± 0.54 -10.07 ± 0.51

MBD -9.73 ± 0.47 -7.77 ± 0.45 -7.77 ± 0.44 -7.23 ± 0.42

EMBD -9.33 ± 0.44 -7.98 ± 0.45 -8.89 ± 0.46 -7.08 ± 0.42

TBMBD -9.46 ± 0.47 -7.09 ± 0.42 -7.66 ± 0.43 -7.16 ± 0.39

Upper -8.79 ± 0.44 -7.30 ± 0.41 -7.52 ± 0.40 -6.20 ± 0.39

Lower -13.99 ± 0.55 -10.21 ± 0.51 -10.21 ± 0.52 -12.32 ± 0.54

AEMS2 -6.40 ± 0.40 -5.65 ± 0.40 -5.75 ± 0.38 -5.78 ± 0.38

ABDESPOT -15.54 ± 0.41 -12.16 ± 0.42 -7.36 ± 0.38 -6.57 ± 0.39

ARDESPOT -14.94 ± 0.43 -12.36 ± 0.41 -7.03 ± 0.38 -6.61 ± 0.37

might be most advantageous to improve agent planning. Finally, we compare the

performances of the best and worst potential functions (and Original) against the three

depth-focused state-of-the-art online POMDP planning algorithms in order to determine

how well our proposed approach compares to the best known approaches and to see what

benefits we gain from maintaining full breadth planning with implicit estimations of

future rewards.

3.5.1. Tag Results

3.5.1.1. Comparison of Full Breadth Planning With and Without Reward Shaping

We begin our results analysis by comparing the performance of full breadth

planning with (PBRS) and without (Original) reward shaping on the Tag benchmark

problem to discover the benefits of implicitly estimating future rewards without explicit

calculations. We present in Table 3.3 the cumulative, discounted reward results earned by

the agent on this benchmark for each solution.

From these results, we make several important observations. First, the majority of

the potential functions resulted in improved performance across the various planning

horizons when compared to breadth-first planning without reward shaping (Original): 18

www.manaraa.com

91

of 28 (64.3%) potential function and time constraint pairs yielded higher cumulative

reward in Tag. Indeed, several of the potential functions (MBD, EMBD, TBMBD, and

Upper) even achieved quite significant improvements over full breadth planning with no

reward shaping: improvements of 31.5%, 29.7%, 17.6%, and 36.0% in cumulative reward

across the four different time constraints for planning (𝜏 = 5, 10, 50, 100 ms),

respectively. Moreover, the best potential functions (MBD, EMBD, TBMBD, Upper) led

to better performance with only 10 ms of planning time, compared with employing an

order of magnitude more time for planning (up to 100 ms) with Original. Thus, reward

shaping can yield improved performance while using even less planning time.

Overall, we conclude from these results that using PBRS to shape rewards with

potential functions often resulted in better planning and subsequent performance by the

agent through considering implicit estimates of future rewards, as intended. So, we

have evidence that using potential functions is a good approach for improving the quality

of plans formed during full breadth planning.

However, not every potential function achieved better performance than Original.

Namely, the Entropy, TopBelief, and Lower potential functions achieved worse (or

similar) performance on many of the time constraints used for planning. Thus, we have

evidence that not every potential function (or indicator of future rewards) is beneficial to

planning, and care must be taken when choosing an appropriate potential function for the

agent’s problem. In the next subsection, we will investigate further why these potential

functions might have been a bad choice on Tag, and we will provide a more general

discussion on this topic in Section 3.5.4.

www.manaraa.com

92

3.5.1.2. Comparison Between Potential Function Types

Next, we try to better understand the differences between the performances

resulting from each of the potential function types on the Tag benchmark problem. From

the results in Table 3.3, we observe that the domain-dependent information (from

expected state-based potential functions, Type 1) (MBD) generally outperformed the

domain-independent information (from measures of the quality of agent knowledge, Type

2) potential functions (Entropy, TopBelief) independently. Considering the fact that

Type 1 potential functions on POMDPs are a direct extension of the type of potential

functions used elsewhere in the literature, we find that utilizing this extension is in fact

still beneficial in POMDPs. On the other hand, combining the two types (Type 1 and 2 in

the EMBD and TBMBD potential functions) generally resulted in better performance

than either type alone. Therefore, we observe an added benefit of considering different

types of potential functions, including those novel to POMDPs and proposed in this

research (Type 2). In other words, the types of information provided by both form a

stronger indicator or estimator of cumulative, future rewards the agent will earn from the

belief states with higher potential under these functions.

The approximations of the optimal value function (Type 4 potential functions,

commonly used in leaf evaluation heuristics), on the other hand, provided mixed results.

On the one hand, the Upper bound approximation (from FIB (Hauskrecht, 2000))

outperformed Original and was the best potential function overall with the greatest

performance amongst potential functions for three of the four planning times considered

(𝜏 = 5, 50, 100 ms). On the other hand, the Lower bound approximation (from Blind

(Hauskrecht, 2000)) was one of the worst performers of all potential functions, regardless

www.manaraa.com

93

of the amount of planning time allotted. Thus, this particular potential function

(commonly used in practice as a leaf evaluation heuristic (e.g., Ross et al., 2008) is

possibly not as good of a choice as other types of information for guiding agent action

selection, at least on the Tag benchmark.

3.5.1.3. Comparison of PBRS with Depth-Focused, State-of-the-Art Planning

Algorithms

Now, we compare full-breadth planning with and without PBRS against the three

state-of-the-art algorithms—AEMS2 heuristic search, as well as ABDESPOT and

ARDESPOT MCTS algorithms. Our goal is to determine whether maintaining full

breadth planning with implicit estimations of future rewards is beneficial in comparison

to depth-focused approaches that explicitly calculate the cumulative, future rewards the

agent intends to maximize. For this analysis, we plot in Figure 3.1 the performance as

planning time increased for the best (Upper) and worst (Lower) potential functions, as

well as Original and the state-of-the-art algorithms.

From these results, we first observe that full breadth planning (with and without

reward shaping) was advantageous for the smallest amounts of planning time (𝜏 = 5, 10

ms) in comparison to the MCTS algorithms. This was due to the depth-focused MCTS

algorithms not having enough time to find a path of actions to the agent’s goal using

biased random sampling (and thus suffered from the problems of sacrificing breadth

without gaining the benefits of focusing on depth during planning). In fact, for these

amounts of planning time, the MCTS algorithms had the worst overall planning

performance on this benchmark (as seen in Table 3.3).

Moreover, as planning time increased, the best potential function (Upper)

remained competitive with the MCTS algorithms as their performance increased (for

www.manaraa.com

94

Figure 3.1: Performance of Planning Algorithms as Planning Time Increased on the

Tag Benchmark Problem for Select Approaches

MCTS, due to better depth-focused planning with more planning time). These results

imply that maintaining breadth-focused planning enhanced by implicit estimates of large

future rewards achieved close performance to good explicit estimates of cumulative,

future rewards. Therefore, implicit estimates can be as useful in at least some domains

(like Tag) as explicitly calculating those rewards (under limited time constraints for

planning
13

).

However, the best state-of-the-art algorithm (AEMS2 heuristic search)

outperformed the best potential function (Upper). Here the PBRS performance was not

quite as good, indicating for the Tag benchmark, depth-focused planning providing

explicit cumulative, reward estimates was still the best approach for planning. That is,

the heuristic used by AEMS2 (based on error bounds in Upper and Lower bounds in

agent rewards and optimistically biased towards Upper bound rewards) indeed selected

appropriate belief states to expand during planning. Therefore, implicit future reward

13

 Without time constraints, explicit calculations would always be superior because the agent could simply

continue planning deeper throughout the entire planning tree. But with time constraints, the agent must of

course sacrifice some breadth for depth, causing under- or over-estimations of agent rewards for some

belief states, as discussed in Section 3.2.2.

www.manaraa.com

95

Table 3.4: Results from RockSample Benchmark Problem

 with 95% Confidence Intervals

Approach
𝝉

5 ms 10 ms 50 ms 100 ms

Original 7.66 ± 0.30 9.19 ± 0.33 11.60 ± 0.35 12.47 ± 0.36

Entropy 4.35 ± 0.35 7.07 ± 0.36 10.23 ± 0.33 11.62 ± 0.35

TopBelief 8.11 ± 0.31 9.46 ± 0.33 11.68 ± 0.34 12.46 ± 0.35

CD 10.91 ± 0.33 11.45 ± 0.33 12.14 ± 0.34 12.19 ± 0.34

ECD 10.75 ± 0.49 12.02 ± 0.46 12.78 ± 0.37 13.91 ± 0.37

TBCD 10.71 ± 0.32 11.62 ± 0.33 11.98 ± 0.34 12.24 ± 0.34

NoExit 7.28± 0.30 8.41 ± 0.32 10.95 ± 0.38 11.82 ± 0.38

NoExitE 4.09 ± 0.33 6.29 ± 0.34 9.76 ± 0.34 11.16 ± 0.36

NoExitTB 7.97 ± 0.31 9.83 ± 0.35 12.74 ± 0.39 13.97 ± 0.40

NoExitCD 11.69 ± 0.36 12.16 ± 0.35 13.05 ± 0.37 13.47 ± 0.37

NoExitECD 11.16 ± 0.54 13.76 ± 0.50 14.57 ± 0.39 16.08 ± 0.40

NoExitTBCD 11.97 ± 0.36 12.73 ± 0.35 13.92 ± 0.38 14.13 ± 0.38

Upper 11.24 ± 0.36 11.16 ± 0.34 8.41 ± 0.31 16.38 ± 0.41

Lower 7.63 ± 0.09 8.15 ± 0.16 12.09 ± 0.31 14.31 ± 0.33

AEMS2 8.35 ± 0.17 14.07 ± 0.33 15.45 ± 0.35 16.41 ± 0.37

ABDESPOT 14.63 ± 0.35 14.71 ± 0.36 13.36 ± 0.39 16.13 ± 0.44

ARDESPOT 14.53 ± 0.18 14.71 ± 0.18 14.22 ± 0.20 16.50 ± 0.21

estimations are not always as good as explicit calculations, even with limited time

constraints and having to sacrifice breadth to achieve such depth during planning.

3.5.2. RockSample Results

3.5.2.1. Comparison of Full Breadth Planning With and Without Reward Shaping

We continue our results analysis by comparing the performance of full breadth

planning with (PBRS) and without (Original) reward shaping on the RockSample

benchmark problem so that we can gain additional insights into the benefits of implicitly

estimating future rewards without explicit calculations. We present in Table 3.4 the

cumulative, discounted reward results earned by the agent on this benchmark for each

solution.

As in the Tag benchmark problem, we again observe that many of the potential

functions resulted in improved performance across the various time constraints on

planning when compared to full breadth planning without reward shaping (Original): 34

www.manaraa.com

96

of 52 (65.4%) potential function and time constraint pairs yielded higher reward in

RockSample. Therefore, we have additional evidence that implicit estimators of

cumulative, future rewards can improve full breadth planning.

Interestingly, the majority of these improved performances occurred for the three

smallest amounts of time allotted for planning (𝜏 = 5, 10, 50 ms) where 27 of 39 (69.2%)

potential function and time constraint pairs yielded higher cumulative reward than

Original. This observation supports Remark 3.3 (c.f., Section 3.3.2) that PBRS can be

most beneficial when the amount of time allowed for planning is smallest.

For the largest amount of planning time, on the other hand, less than half of the

potential functions (ECD, NoExitTB, NoExitCD, NoExitECD, NoExitTBCD, Lower)

outperformed Original. This again indicates that planning with PBRS is not beneficial

with any potential function and can be less useful as time constraints are reduced (i.e.,

there is more time for planning and less need for implicit estimators of rewards beyond

the planning horizon).

3.5.2.2. Comparison Between Potential Function Types

Comparing between potential function types, we make many of the same

observations for the RockSample as we did for the Tag benchmark in Section 3.5.1.2:

domain-dependent information (Type 1, CD) potential functions generally outperformed

domain-independent information (Type 2, Entropy and TopBelief) individually. Indeed,

the Entropy potential function yielded some of the worst performances amongst all

approaches used in our experimental study. Upon further investigation, this was due to

this potential function leading the agent to overly conservative behavior by sensing too

frequently to reach overly high confidence values before sampling rocks, resulting in less

www.manaraa.com

97

efficient behavior than the other approaches. However, together potential function Types

1 and 2 (especially ECD) perform better than either member type alone. Again, this

demonstrates the advantages of exploiting information only available in POMDPs (Type

2 potential functions), and not in fully observable settings, as previously studied.

Furthermore, we also observe that our other proposed novel type of potential

function—belief prioritization (Type 3)—also does not perform as well on its own as

some of the other types, but combining Types 1, 2, and 3 yielded the best performance

amongst all potential function types. In particular, planning with the NoExitECD

potential function had the best performance amongst all potential functions. Thus, like

Type 2, this third type of potential function (also novel to POMDPs and introduced by

this research) is a beneficial form of metareasoning for the agent within a POMDP

planning framework, but requires other types of information (especially domain-specific

information measured in Type 1 potential functions) to best improve agent planning.

Finally, as in the Tag benchmark problems, the approximations of the optimal

value function (Type 4, commonly used as leaf evaluation heuristics) provided mixed

results. Whereas the Upper bound (calculated using FIB (Hauskrecht, 2000)) again

generally provided improved behavior, the Lower bound potential function also led to

lower performance than planning without reward shaping (Original) for the lowest time

constraints on planning (𝜏 = 5, 10 ms). Thus, potential functions of the type commonly

used for leaf evaluation heuristics still provided some benefit on this problem, but was

less beneficial overall than other potential function types providing other indicators of

which belief states yield high cumulative, future rewards.

www.manaraa.com

98

Figure 3.2: Performance of Planning Algorithms as Planning Time Increased on the

RockSample Benchmark Problem for Select Approaches

3.5.2.3. Comparison of PBRS with Depth-Focused, State-of-the-Art Planning

Algorithms

To better understand the relative performance of PBRS performing full breadth

planning with implicit estimation of cumulative, future rewards against depth-focused

state-of-the-art algorithms on the RockSample benchmark problem, we plot in Figure 3.2

the performance as planning time increased for the best (NoExitECD) and worst

(NoExitE) potential functions, as well as Original and the state-of-the-art online POMDP

planning algorithms.

From these results, we observe that for each planning time, full-breadth planning

with the NoExitECD potential function performed favorably to the three state-of-the-art,

depth-focused planning algorithms. Namely, NoExitECD outperformed the state-of-the-

art heuristic search algorithm AEMS2 for the most constrained amount of planning time

(𝜏 = 5 ms) and the state-of-the-art Monte Carlo search DESPOT algorithms as planning

time increased (𝜏 = 50 ms), and was comparable to the state-of-the-art algorithms for the

other planning times. This is a very interesting result because unlike in the Tag

benchmark problem, Table 3.4 shows that in RockSample all of the depth-focused

www.manaraa.com

99

approaches—the heuristic search algorithm (AEMS2) and the MCTS algorithms

(ABDESPOT, ARDESPOT)—generally outperformed full-breadth planning (especially

compared to Original), even for the lowest amounts of planning time. Thus, in this

particular problem, depth-focused planning appears to generally be a better approach than

full-breadth planning. However, the indicators of future rewards measured by

NoExitECD (combining both a Type 1 potential function as commonly used elsewhere in

the PBRS literature, as well as our novel Type 2 and 3 potential functions exploiting

metareasoning about agent knowledge and histories) sometimes led the agent to select

better actions using implicit estimates of cumulative, future rewards instead of spending

time explicitly calculating such rewards with depth-focused planning. Combined with

the Tag benchmark results, this is additional evidence that using the novel types of

potential functions for planning is very advantageous for improving agent performance in

partially observable environments.

3.5.3. AUVNavigation Results

3.5.3.1. Comparison of Full Breadth Planning With and Without Reward Shaping

Finally, we evaluate the results from the most complicated AUVNavigation

benchmark, where time constrained planning is generally very difficult without some

estimations of future rewards along very deep planning paths due to the long sequence of

actions required to reach the goal state (which is the only state to provide positive reward

to guide planning). As before, we begin our analysis of the results from this benchmark

by comparing the performance of full breadth planning with (PBRS) and without

(Original) reward shaping to evaluate the benefits of implicitly estimating future rewards

www.manaraa.com

100

Table 3.5: Results from AUVNavigation Benchmark Problem

with 95% Confidence Intervals

Approach

𝝉

100 ms 500 ms 1000 ms 5000 ms

Original -7.41 ± 7.69 -6.63 ± 7.59 -5.19 ± 6.81 -5.02 ± 6.75

Entropy -76.41 ± 41.76 -598.67 ± 38.01 -549.19 ± 26.55 -262.52 ± 26.80

TopBelief -511.67 ± 49.07 -609.74 ± 22.39 -525.84 ± 25.62 -291.15 ± 66.50

GD 0.81 ± 18.00 359.86 ± 77.31 366.83 ± 82.00 480.05 ± 101.04

EGD -218.20 ± 77.21 -35.91 ± 78.78 -40.80 ± 67.10 18.10 ± 101.97

TBGD -671.25 ± 16.43 -602.84 ± 29.89 -505.37 ± 33.08 -580.47 ± 49.34

HBGD 63.53 ± 109.08 552.01 ± 92.95 542.61 ± 76.10 443.69 ± 96.62

Upper -15.16 ± 9.25 -16.23 ± 9.24 163.77 ± 70.62 156.81 ± 74.42

Lower -4.70 ± 6.59 -4.72 ± 6.59 -4.75 ± 6.59 -2.43 ± 1.77

AEMS2 -4.71 ± 6.59 -4.69 ± 6.59 -1.42 ± 0.65 -4.42 ± 6.56

ABDESPOT 305.69 ± 107.45 458.08 ± 110.50 323.94 ± 86.37 391.94 ± 80.89

ARDESPOT 32.81 ± 40.97 57.82 ± 40.19 82.30 ± 42.89 403.04 ± 80.78

without explicit calculations. We present in Table 3.5 the cumulative, discounted reward

results earned by the agent on this benchmark for each solution.

In AUVNavigation, we observe far different results than in the simpler Tag and

RockSample benchmarks. At first glance, PBRS often appears to have resulted in worse

performance than planning without reward shaping (Original): 17 of 32 (53.1%) of the

potential function and time allocation pairs resulted in worse performance than planning

without reward shaping.

However, upon deeper investigation, these results are a consequence of an

interesting quirk in the reward function optimized by the agent, rather than truly worse

performance when using PBRS. In particular, recall that the agent received zero penalty

for either doing nothing with the Stay action or for changing its orientation (using the Up,

Down, Left, and Right actions). Otherwise, the agent received a small penalty for

moving using the Forward action. Thus, for time constrained full breadth planning

without PBRS, the agent rarely calculated any benefit to moving Forward and instead

chose actions that yielded zero reward (and thus no cost). As a result, the agent without

PBRS never reached the goal location and sat aimlessly, sometimes eventually drifting

www.manaraa.com

101

into a rock (due to the dynamic currents underwater), resulting in a penalty of -500.

Thus, the cumulative, discounted rewards earned by the agent without PBRS were close

to 0 (any penalty of -500 occurred after many steps and was heavily discounted) and

identical across all amounts of time allowed for planning. Therefore, planning without

PBRS resulted in random, uneventful behavior (stuck in Stage 1 of the problem, c.f.

Section 3.4.1.3) and not goal-directed behavior, as necessary (c.f., Section 3.4.1.3).

On the other hand, for the agents with potential functions using PBRS, the agent

received incentive for moving Forward from its shaped rewards, thereby incurring

negative costs for movement. As a result, the agent usually achieved worse cumulative,

discounted rewards, but more goal-directed behavior. In particular, the potential

functions combining domain-dependent and domain-independent information (EGD,

TBGD) chose actions that successfully completed Stage 1 (uncertainty reduction) and

Stage 2 (navigating through the rock obstacles) of the problem, but incurred large costs (-

50 per step) by moving along the surface of the water, where the agent always updated its

location with perfect accuracy. Thus, including potential functions resulted in better

behavior towards goal accomplishment than full breadth planning without reward shaping

(Original), due to supplying required intermediate positive signals that allowed the agent

to find a plan within time constrained planning that lead the agent towards the goal state.

To better evaluate goal achievement in the challenging AUVNavigation

benchmark problem, we present in Table 3.6 the proportion of the 100 runs in which the

agent successfully reached a goal location. From these results, we observe that planning

with PBRS was much more successful: 18 of 32 (56.3%) of the potential function and

horizon pairs resulted in more goal achievement than planning without PBRS (Original),

www.manaraa.com

102

Table 3.6: Proportion of AUVNavigation Runs Successfully Ending at a

Goal Location with 95% Confidence Intervals

Approach

𝝉

100 ms 500 ms 1000 ms 5000 ms

Original 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Entropy 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

TopBelief 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

GD 0.01 ± 0.02 0.82 ± 0.08 0.89 ± 0.06 0.88 ± 0.06

EGD 0.78 ± 0.08 0.88 ± 0.06 0.86 ± 0.07 0.87 ± 0.07

TBGD 0.01 ± 0.02 0.20 ± 0.08 0.18 ± 0.08 0.25 ± 0.09

HBGD 0.75 ± 0.09 0.87 ± 0.07 0.92 ± 0.05 0.90 ± 0.06

Upper 0.00 ± 0.00 0.00 ± 0.00 0.33 ± 0.09 0.33 ± 0.09

Lower 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

AEMS2 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

ABDESPOT 0.49 ± 0.10 0.65 ± 0.09 0.59 ± 0.10 0.76 ± 0.08

ARDESPOT 0.30 ± 0.09 0.49 ± 0.10 0.57 ± 0.10 0.75 ± 0.09

whereas PBRS never performed worse, regardless of the potential function used. Thus,

we also find evidence in very complicated environments that potential functions can

produce improved planning in a full breadth scenario using implicit estimations of

cumulative, future rewards.

3.5.3.2. Comparison Between Potential Function Types

In particular, potential functions combining domain-dependent location

information (for rock obstacle avoidance and movement towards the goal in Stages 2 and

3 using Type 1 potential function information) with either domain-independent

information (for encouraging belief improvement in Stage 1 using Type 2 potential

function information) (EGD, TBGD) or belief prioritization (also prioritizing belief

improvement in Stage 1 using Type 3 potential function information) (HBGD) achieved

much better performance than planning without PBRS. Domain-dependent location

information (Type 1) also performed very favorably to planning without PBRS, although

not quite as well as adding metareasoning by combining Type 1 with Type 2 or Type 3

potential functions. Overall, this level of performance is quite significant since

www.manaraa.com

103

successful time constrained planning is generally incredibly difficult for such a complex

problem!

Moreover, for each successful potential function, performance often increased as

the planning horizon increased, with HBGD eventually achieving the goal in nearly all

(92%) runs. Therefore, planning with PBRS was also very beneficial in AUVNavigation,

and was able to guide the agent to goal achievement even with time constrained planning

in a very complex domain – containing multiple stages with different objectives and long

sequences of actions required to reach the goal state – so long as the potential function

considered adequate information to guide the agent through the complex domain (here,

combinations of information about domain-dependent location and domain-independent

certainty or belief prioritization).

Interestingly, potential functions based on approximations of the optimal value

function (Upper, Lower) were not as beneficial in this domain (although Upper did

improve performance for the two largest amounts of planning time considered, 𝜏 =

1000, 5000 𝑚𝑠). This is a direct consequence of the complexity of the domain, causing

the upper and lower bounds on the value function 𝑉(𝑏) and 𝑉(𝑏) from Fast Informed

Bound and Blind (Hauskrecht, 2000) to be quite loose (ranging from over 2000 to less

than 0 for most belief states), not helping agent performance (as previously observed in

Tag).

3.5.3.3. Comparison of PBRS with Depth-Focused, State-of-the-Art Planning

Algorithms

As a final analysis, in order to better understand the relative performance of full

breadth planning with PBRS on the AUVNavigation benchmark problem against depth-

focused state-of-the-art approaches, we plot in Figure 3.3 the performance as planning

www.manaraa.com

104

Figure 3.3: Performance of Planning Algorithms as Planning Time Increased

on the AUVNavigation Benchmark Problem for Select Approaches

Figure 3.4: Proportion of AUVNavigation Runs Successfully Ending at a

Goal Location as Planning Time Increased for Select Approaches

time increased for the best (HBGD) and worst (TBGD on rewards, Entropy on proportion

of successful runs) potential functions, as well as Original and the state-of-the-art online

POMDP planning algorithms. We also plot in Figure 3.4 the proportion of runs

successfully ending at the goal location as a function of planning time and approach.

From these figures, we again observe very successful performance by PBRS with

the best potential function: HBGD achieved the highest discounted, cumulative rewards

in all but the lowest amount of time for planning (𝜏 = 100 ms) and the highest proportion

of goal achievement across all planning times. This is a very interesting result as on the

www.manaraa.com

105

one hand, AUVNavigation requires long sequences of actions to accomplish its goal, so

depth-focused planning approaches like AEMS2 or the MCTS algorithms (ABDESPOT,

ARDESPOT) should have an inherent advantage. However, because the required

sequences are so long (more than 20 actions to find positive future rewards), even depth-

focused planning could not find a path from the agent’s starting belief state to the goal

location under time constrained planning. Instead, such depth-focused approaches

wasted time exploring down paths that earn higher intermediate rewards (either not

incurring costs for moving forward, or moving along dangerous routes on the bottom of

the grid near rocks without incurring high cost at the surface for determining the agent’s

true location), causing it to waste time planning down paths of overestimated value and

underestimating the value of the truly best action sequences (that were either unexplored

or under sampled during planning). PBRS with the HBGD, on the other hand, followed

an indicator of high future rewards beyond what depth-focused planning could achieve

under such limited time constraints, and also performed full breadth planning to

minimize the risk of following a wrong path initially in the planning tree in order to avoid

underestimating the value of the best action sequences, to solve this particular problem.

Therefore, full breadth planning with PBRS is very beneficial over state-of-the-art

approaches on the type of problem represented by the AUVNavigation benchmark:

agents suffering from high uncertainty and requiring long action sequences to find

positive future rewards.

Interestingly, the AEMS2 heuristic search algorithm that performed so admirably

on the other two benchmark problems (generally better than MCTS and at least

competitive with the best potential function using PBRS) performed very poorly on

www.manaraa.com

106

AUVNavigation. Like full breadth planning without reward shaping (Original), the agent

never accomplished the goal and generally had random, non-goal directed behavior when

planning with AEMS2 for all amounts of time allocated for planning. Unlike in Tag, in

this problem, the heuristic used in AEMS2 was not informative for choosing how to best

expand the agent’s plan and led to many bad paths and wasted planning time, making it

unable to achieve the expected benefits of depth-focused planning, resulting in closer

behavior to full breadth planning without implicit estimations of cumulative, future

rewards (and similar overall performance to such a planner, Original). Specifically, on

this benchmark, the Upper bound rewards (calculated using FIB (Hauskrecht, 2000))

guided the agent as if it had near certain knowledge of the true state of the environment

(namely, its current location), but this biased the agent to explore actions maximizing

agent rewards under such conditions (namely, attempting to navigate through the rocks).

In turn, this led the agent away from exploring action sequences that achieved Stage 1 of

the problem (determining the agent’s location), and thus left the agent ultimately

confused on how to act since its uncertainty was never actually resolved.

3.5.4. Discussion

Considering our results across all three benchmark problems, we now draw some

general conclusions about the benefits and drawbacks of using PBRS to improve online

POMDP planning. Overall, we empirically discovered from our experimental results that

in general, PBRS can be very beneficial to online planning for POMDPs.

First, more often than not, the potential functions employed led to better

performance than similar full breadth planning without reward shaping, demonstrating

that implicit estimations of cumulative, future rewards (indicated by different types of

www.manaraa.com

107

information) indeed can improve the quality of plans and subsequent action selection in a

wide range of environments. Thus, PBRS is beneficial to consider in environments

where full breadth planning might be useful and still gain some of the benefits of depth-

focused planning without having to spend the computational costs to explicitly calculate

cumulative, future rewards, such as environments where the agent must take care to

avoiding reaching dangerous or undesirable situations with no forethought on what to do

or how to reach a better situation in order to eventually achieve its goals, as discussed in

Section 3.1.

Second, we also gained insights into which types of information measured by

potential functions are most beneficial to improve agent action selection. In each of the

three benchmarks, we observed that domain-dependent information (Type 1, often in the

form of goal-directed movement for agents in grid-worlds like our three benchmarks),

yielded better performance than either of the two novel types of potential functions

proposed in this chapter exploiting properties unique to POMDPs: both domain-

independent information providing metareasoning about agent knowledge (Type 2), or

belief prioritization providing metareasoning about histories of agent interaction with the

environment (Type 3). However, we also observed in each environment that combining

these types of potential functions yielded some of the best performances of any potential

function type when using these types together, allowing metareasoning from Type 2 and

Type 3 to boost performance beyond that achieved by Type 1 alone. Specifically,

combinations such as NoExitECD combining Type 1 + Type 2 + Type 3 in RockSample,

and HBGD combining Type 1 + Type 3 in AUVNavigation produced the best

performances across all potential functions (and generally across almost all considered

www.manaraa.com

108

approaches to online planning), and EMBD and TBMBD combining Type 1 + Type 2 in

Tag also performed well. However, approximations of optimal value functions (Type 4),

commonly used as leaf evaluation heuristics, resulted in more mixed results. On the one

hand, considering an approximation of the Upper bound on the value function (using FIB

(Hauskrecht, 2000)) as a potential function led to the best results on Tag and moderately

good results on RockSample and AUVNavigation. On the other hand, considering an

approximation of the Lower bound on the value function (using Blind (Hauskrecht,

2000), which is also used in some online POMDP planning algorithms as a leaf

evaluation heuristic, e.g., Ross et al., 2008), generally led to some of the worst

performances and occasionally worse than full breadth planning without PBRS

(Original). Overall, we conclude that metareasoning about agent knowledge (using

standard measures of certainty like Entropy or TopBelief, Eqs. 3.6-3.7, Type 2) and/or

about histories of agent interactions with the environment (belief prioritization, Type 3)

combined with any available domain-specific information (e.g., distances to goals,

whether measured in a grid space or in some other fashion as observed by Ng et al.

originally (1999)) was generally the most beneficial type of potential functions to use for

PBRS with online POMDP planning. Thus, we recommend starting with such

combinations when trying to identify how to best use PBRS on a new POMDP problem.

Given that standardized measures exist for Type 2, this hopefully only requires

identifying relevant domain-specific information to improve planning, which is already a

requirement for PBRS use in any domain, since domain-specific information is generally

the only type of information previously considered in the PBRS literature.

www.manaraa.com

109

Finally, in comparison to three depth-focused state-of-the-art online POMDP

planning algorithms: the AEMS2 heuristic search algorithm (Ross & Chaib-draa, 2007)

and the DESPOT MCTS algorithms (Somani et al., 2013), we also observed that full

breadth planning using PBRS led to very favorable agent performance. On the largest

and most complicated benchmark problem (AUVNavigation), the best potential function

(combining Types 1 and 3 for domain-specific information and metareasoning about

histories) outperformed each of the state-of-the-art algorithms for most of the allotted

times for planning considered as our time constraints. On the other two benchmarks (Tag

and RockSample), the best heuristic (Type 4 using approximations of the Upper bound on

the value function for Tag, and combining Types 1, 2, and 3 for domain-specific

information and metareasoning about agent knowledge in RockSample) also

outperformed at least one of the state-of-the-art algorithms for some of the amounts of

time allotted for planning, and was generally competitive on the rest. Thus, it appears

overall that some combination of metareasoning (novel to POMDP applications of

PBRS) and domain-specific information often provides good enough implicit estimations

(or signal indicators) of cumulative, future rewards to allow the agent to save time from

not explicitly calculating such estimations through depth-focused planning, enabling

more time for full breadth planning to avoid the potential pitfalls identified in Section 3.1

from a lack of breadth in planning. Especially noteworthy is that such potential function

types do not require precomputation and generally scale well with the size of the

POMDP, unlike Type 4 (representing domain information also used by the state-of-the-

art algorithms, as explained in the following paragraph), which can be prohibitively

expensive to calculate in large POMDPs (especially those with very large state spaces).

www.manaraa.com

110

Therefore, metareasoning with PBRS might be even more advantageous in even larger

planning problems, which we intend to explore in the future (noting again that it already

performed the best in our largest, most complicated problem: AUVNavigation).

Although PBRS does add some (domain-specific or domain-independent)

information to the agent’s planning in addition to the original reward function 𝑅, this is

similar to the behavior of the state-of-the-art algorithms. Namely, state-of-the-art

heuristic search algorithm AEMS2 and the state-of-the-art Monte Carlo search DESPOT

algorithms each consider upper 𝑉 and lower bounds 𝑉 on the value function, which are

either precalculated offline (e.g., using the FIB or Blind algorithms (Hauskrecht, 2000))

or are calculated directly on the agent’s belief state, just like our proposed potential

functions. These bounds then indirectly provide the agent with information about its

domain that further inform its evaluation of policies while planning. For example, in

RockSample, the bounds inform the agent about the locations of rocks, as these are the

only locations where the largest positive cumulative rewards exist. Likewise, in

AUVNavigation, these bounds inform the agent about the locations of obstacles and the

goals as these are the only locations where the upper bound on the value function and the

immediate reward are equal (since both types of locations are terminal locations).

Instead, our potential function framework provides a principled, mathematical vehicle for

considering additional types of information to inform policy evaluation during finite

horizon planning with several established theoretical results. The goal of this research is

not necessarily to produce a best new planning algorithm that is superior to all state-of-

the-art algorithms, but instead: (1) to provide such a vehicle for embedding additional

domain-specific or domain-independent information to further improve online planning

www.manaraa.com

111

for POMDPs, and (2) to explore what types of such information may or may not be

useful across different types of planning problems. Identifying valuable types of

information could then even be used to create better heuristic search algorithms and

further improve the state-of-the-art in online POMDP planning.

However, PBRS is not an approach that works with any potential function and on

any problem, as it is possible for a potential function to bias policy evaluation in a bad

way. Based on our results, we conclude that some forethought is certainly necessary to

identify a good potential function for a particular problem. One necessary component of

a good potential function appears to be domain-specific information leading the agent

towards its ultimate goal (e.g., distances in grid-based worlds). In environments where

such domain expertise is difficult to encode or unknown, PBRS might not be a good

choice, as this type of information was generally a prerequisite for the combinations that

yielded the best performance, competitive with depth-focused state-of-the-art online

POMDP planning algorithms. Indeed, considering the other components (Type 2 and/or

3 metareasoning) individually generally hurt agent performance (compared to full

breadth planning without reward shaping). In the future, we intend to explore additional

types of problem domains where these types of potential functions might be more useful,

which we suspect might include (1) environmental monitoring applications (e.g., sensor

tracking) where the agent’s sole goal is to have high belief certainty, making potential

functions of Type 2 more useful alone, as well as (2) problems with multiple subtasks

required to complete the agent’s ultimate task, where belief state prioritization (potential

function Type 3) might be more useful to identify general strategies for accomplishing

subtasks individually.

www.manaraa.com

112

Furthermore, we note that the complexity of potential functions necessary for

improving planning increases with the complexity of the problem modeled by the

POMDP. That is, in the challenging AUVNavigation problem, simple linear

combinations of different types of potential functions were less effective in improving

agent performance than in the simpler Tag and RockSample domains. Instead, we had to

rely on a more complicated combination of belief prioritization (Type 3) and domain-

dependent expected state-based potential (Type 1)—HBGD—in order to best guide the

agent through the three subproblems represented by different stages in order to maximize

goal achievement and cumulative, discounted rewards. However, even in complex

AUVNavigation, simple linear combinations of potential functions still yielded

significant improvements in agent performance compared to both full-breadth planning

without PBRS (Original) and at least some of the state-of-the-art online planning

algorithms. Furthermore, for the simpler benchmark problems (which are still reasonably

complex with up to tens of thousands of states, c.f., Section 3.4.1), linear combinations of

different types of simple potential functions resulted in significantly improved planning,

demonstrating that even simpler potential functions can still boost planning performance.

Moreover, potential functions in complex domains might also require a bit more

insight to fine-tune, as well. For example, in the AUVNavigation problem, we eventually

added a coefficient of 100,000 (rather than a uniform coefficient of 1 in simpler Tag and

RockSample) to the potential functions to properly guide the agent to the goal state from

its initial uncertainty. Recall that the successful potential functions (EGD, TBGD,

HBGD) reshaped rewards partially based on the multiplicative inverse of the agent’s

distance from the goal, and thus changes to these functions (Eqs. 3.17-3.18) were quite

www.manaraa.com

113

small when the agent was highly uncertain (since it was very far from the goal). This

meant that the additional signal from the potential function was easily outweighed by the

costs of gathering information (namely moving with cost at most -1.73 for moving

towards better location information, or -50 for surfacing to discover the agent’s exact

location and resolve all uncertainty). To “boost” the potential function’s signal toward

cumulative, future rewards, we had to multiply the signal by a large constant in order to

offset the order of magnitude differences between potential differences and reward costs.

In other domains with high costs for information gathering, or to otherwise complete

necessary intermediate steps towards the agent’s ultimate goal, large coefficients might

also be necessary. Determining an appropriate coefficient can either be done through

experimental investigation, or by analytically comparing the additional shaped reward

(from the difference in potential values, Eqs. 3.3-3.4) against the costs associated with

actions that maximize or quickly increase shaped rewards. We took a combination of

both approaches to set our coefficient for AUVNavigation, although other coefficients

might have also been appropriate and led to similar performance. In the future, we

intend to develop a greater theoretical understanding of how such coefficients can and

should be determined based on the original shape of the reward function and the signals

in the potential function. Of note, the state-of-the-art Monte Carlo DESPOT algorithm

also utilizes some parameter hand-tuning with respect to the problem domain, most

notably the regularization parameter 𝜆 used by the ARDESPOT variant (Somani et al.,

2013). To provide for a fair comparison, we also tuned this parameter for each of our

experimental benchmarks, reusing the 𝜆 value suggested by Somani et al. in the

documentation of the implementation of their algorithm
14

 for the Tag and RockSample

14
 Available online at

www.manaraa.com

114

benchmarks, and after empirically searching for an appropriate value ourselves on

AUVNavigation.

3.6. Conclusions and Future Work

In conclusion, we have explored how extending potential-based reward shaping

(PBRS) from reinforcement learning (RL) to online planning with POMDPs can be used

to improve approximate planning and agent performance given the compuational

complexity of planning and limited time constraints. In particular, our aim was to

improve long term, cumulative reward estimations in full breadth planning to avoid

problems with depth-focused planning identified in Section 3.1. Our approach entails

defining a potential function over the agent’s belief states that indicates the ability of the

agent to earn future rewards. The agent’s reward function is then shaped by adding value

from this potential function, which leads the agent to be biased towards choosing actions

during plan execution that cause the agent to reach belief states that earn larger rewards

beyond the planning horizon. We categorize four types of potential functions (with

examples), along with hybrid combinations: (1) domain-dependent information from

expected state potential (extending directly from the prior use of PBRS with RL and

MDPs), (2) domain-independent information measuring a quality or property of a belief

state (e.g., certainty), (3) belief prioritization (e.g., priority ordering on belief states), and

(4) approximations of the optimal value function. The second and third of these types are

novel to POMDPs and offer forms of metareasoning (about agent knowledge and about

histories of agent interactions with the environment, respectively) to improve POMDP

planning.

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.DownloadDespot

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.DownloadDespot

www.manaraa.com

115

We established from a theoretical perspective that planning with PBRS (1) can,

given a finite horizon, lead to different policies than planning with the original unshaped

rewards, which in turn enables the agent to earn greater future rewards assuming a good

potential function, (2) PBRS can most improve planning when planning horizons are

shortest, and (3) even though the agent’s reward function is modified, planning with

PBRS still optimizes (over the infinite horizon) the agent’s original reward function.

Finally, we verified these results in practice using an empirical study employing three

classic POMDP benchmark problems, demonstrating that under limited time constraints,

an agent planning with PBRS better maximized its cumulative, unshaped rewards than

planning without PBRS, especially when combining various forms of metareasoning and

domain-specific information (Types 1-3). In the most difficult benchmark, we also

discovered that PBRS can enable time constrained online POMDP planning to

successfully reach the target goal state when such behavior is otherwise incredibly

difficult without reward shaping. In particular, time limited planning requires

intermediate positive signals indicating appropriate action sequences towards a goal state

that are otherwise only discoverable with very deep planning identifying long sequences

of actions reaching positive rewards. For complex environments where the only positive

reward is earned for reaching the goal state, PBRS can provide such intermediate signals

missing from the original reward function to properly guide the agent, making this form

of online planning a viable approach. We also compared the performance of PBRS for

online POMDP planning against three state-of-the-art online planning algorithms and

discovered that PBRS using the best combination of potential functions (Types 1-3 on

www.manaraa.com

116

two benchmarks, Type 4 on the other) performed comparable to or better than each of the

state-of-the-art algorithms on all benchmarks tested.

Furthermore, whilst the focus of this chapter has been on planning, the theoretical

results on how to extend PBRS to POMDPs, the novel types of potential functions, and

the effect of finite horizons on PBRS are also applicable to partially observable RL.

In the future, we plan to continue this line of research in several directions. First,

we intend to further study potential functions to determine what additional qualities or

properties of belief states are useful indicators of future rewards in order to better

determine how to choose appropriate potential functions given the properties of complex

environments (and consider other forms of metareasoning that might be useful to add to

other potential functions to further improve agent behavior). Second, we intend to explore

the application of PBRS to other settings of planning, including (1) decentralized

POMDPs, where planning complexity amongst multiple agents is even more complex

than planning with a standard POMDP, and addressing multiagent planning complexity is

still an open problem, and (2) offline POMDP planning, where concepts from PBRS such

as the potential function could be used to better guide the selection of which belief states

to plan around in order to create better plans focused on the most important belief states.

Third, PBRS could be potentially included in other types of online POMDP planning

algorithms (e.g., employed in Monte Carlo search methods to bias sampling towards

large cumulative, future rewards), in which case both PBRS and related optimal reward

functions (Sorg, Singh, & Lewis, 2011) would both be of interest to study in order to

potentially further improve online POMDP planning.

www.manaraa.com

117

CHAPTER 4 SITUATIONALLY-AWARE ONLINE HEURISTIC

PLANNING FOR HIGHLY UNCERTAIN ENVIRONMENTS

In this chapter, we present a second solution for the Analysis Problem (c.f.,

Section 1.3), also within the context of POMDPs, a popular approach to deliberative

information gathering (c.f., Section 2.2.2). In contrast to our first solution (PBRS for

POMDPs, c.f., Chapter 3), this solution enables an agent to reflect upon the benefits of

sensing actions (uncertainty reduction) during planning in order to lead the agent towards

an appropriate policy for guiding action selection, instead of reflecting later during plan

execution. In this manner, the agent will find policies that cause the agent to first perform

high quality deliberative information gathering to benefit its task accomplishment.

Altogether, this approach enables the agent to reflect farther into the future than our first

solution in order to potentially achieve more targeted, long term benefits from improved

information gathering.

This solution features reflection on the benefits of deliberative information

gathering in two ways: (1) through the Long Sequence Entropy Minimization (LSEM)

heuristic, which enables the agent to expand plans along paths of high quality sensing

(through reduction of uncertainty in its knowledge), and (2) through the Difference-based

Heuristic Selection (DHS) mechanism, which enables an agent to reflect on its most

pressing needs in the context of its current plan: improving its knowledge or earning high

rewards through task accomplishment. Together, these advancements in POMDP

planning improve both deliberative information gathering, as well as overall agent

performance.

www.manaraa.com

118

Furthermore, as with our PBRS for POMDPs solution, this approach also solves a

greater general problem in the POMDP literature: better online planning (i.e., greater

cumulative reward achievement) with heuristic search algorithms, especially in highly

uncertain domains that are in greatest need of reflective, deliberative information

gathering. As such, this chapter is written to address the greater problem. A shorter,

earlier version was accepted for publication as a full paper at the AAMAS 2014

conference (Eck & Soh, 2014b). We evaluate our solution in several benchmark POMDP

problems, demonstrating that our solution yields successful policies with less planning

time in highly uncertain domains and comparable performance in simpler problems.

4.1. Introduction

Intelligent agents and multiagent systems deployed to real-world applications are

frequently required to make decisions about how to accomplish goals and tasks while

operating in uncertain environments. One popular approach for reasoning under

uncertainty is the partially observable Markov decision process (POMDP) (Kaelbling,

Littman, & Cassandra, 1998), which offers several key features that enable an agent to

decide how to behave even though it faces uncertainty. First, POMDPs model the

causes of uncertainty in the complex environment’s dynamics: both changes to the

environment’s state over time, as well as partial observability hiding the correct state

from the agent. Second, POMDPs also model the rewards earned and costs incurred by

the agent for taking different actions, enabling the agent to plan sequences of actions

earning high expected cumulative rewards that accomplish its tasks and goals.

In particular, within POMDP planning, an agent faces two primary types of

uncertainty: (1) uncertainty about the current state of the environment, and (2)

www.manaraa.com

119

uncertainty in the cumulative rewards earned for different action sequences. The first

form of uncertainty—which we term environment state uncertainty (ESU)—reflects how

well the agent understands the current state of its environment and is addressed through a

Bayesian framework for updating probabilistic beliefs about the current state of the

environment. The second form of uncertainty, on the other hand—which we term

cumulative reward uncertainty (CRU)—reflects the agent’s understanding of the

cumulative rewards it will earn and is addressed through recursively or iteratively

computing the series of rewards earned for different action sequences, so long as the

agent has time for planning. As the agent plans for an increasing number and depth of

action sequences, its estimations of cumulative rewards become more accurate.

In this chapter, we consider the setting of online planning where agents must

interleave planning and execution while operating in the environment, and thus have

limited amounts of time for planning. Such an approach to planning is popular in the

recent literature, as online planning enables an agent to be more reactive in real-world

environments and adapt to unexpected situations. It is also more efficient in very large

problems (with many possible states, actions, and observations) where having to plan in

advance for all possible situations in offline planning can be prohibitively expensive,

even though offline planning can afford more time for planning. Instead, online planning

enables an agent to repeatedly plan only locally around its current belief and choose the

best possible action in its current situation without worrying about other situations it

might never encounter.

Within online POMDP planning, the state-of-the-art algorithms focus primarily

on resolving the second type of uncertainty (CRU), as it is assumed that the first type

www.manaraa.com

120

(ESU) will naturally be resolved by the Bayesian belief framework as the agent receives

observations after taking each action. For instance, heuristic search algorithms such as

AEMS2 (Anytime Error Minimization Search 2) (Ross & Chaib-draa, 2007) and FHHOP

(Factored Hybrid Heuristic Online Planning) (Zhang and Chen, 2012) guide planning to

minimize the uncertainty in the agent’s estimations of cumulative future rewards for

taking each action. In these algorithms, such uncertainty can be quantified through an

error bound on future rewards, measured as the difference between upper and lower

bound estimates on cumulative rewards. By minimizing this error bound, the agent tries

to quickly find plans that are close to optimal by selectively targeting calculations that

best improve the agent’s estimations of cumulative rewards. The state-of-the-art in

Monte Carlo search methods, ARDESPOT (Anytime Regularized DEterminized Sparse

Partially Optimal Trees) (Somani et al., 2013), similarly guides random sampling of

action sequences for cumulative reward calculations during online planning. In several

experimental studies across a wide range of different benchmarks, these approaches have

been demonstrated to be quite effective (e.g., Ross & Chaib-draa, 2007; Ross et al., 2008;

Silver & Veness, 2010; Somani et al., 2013; Zhang & Chen, 2012), indeed achieving

performance close to (or even exceeding) the state-of-the-art offline planning algorithms

for which planning time is less constrained.

However, we will demonstrate that even state-of-the-art online POMDP planning

algorithms have difficulty reducing CRU when it is also very difficult to reduce ESU,

especially the heuristic search algorithms. We term such environments highly uncertain

environments. This difficulty arises for several reasons. First, when ESU is high, the

agent often requires long sequences of information gathering actions to adequately

www.manaraa.com

121

understand the current state of the environment. Along these long sequences, the agent’s

beliefs about the current state of the environment will not change much after any

individual action (else long sequences of information gathering would not be necessary).

Given the manner in which error bounds on cumulative rewards are calculated, this also

implies that the error bound will not change much from one action to the next, making it

difficult to plan action sequences with low CRU until ESU is reduced. Second, the upper

and lower bounds on cumulative rewards are commonly calculated using approaches

(e.g., QMDP, Fast Informed Bound (FIB), Blind (Hauskrecht, 2000)) that assume full (or

near full) observability of the environment state, and thus assume no (or little) ESU. As a

result, actions taken to reduce ESU are suboptimal under the upper and lower bounds,

and are not favored by the state-of-the-art algorithms. Overall, these challenges make it

difficult for state-of-the-art heuristic search online POMDP planning algorithms to find

acceptable plans within the short times allotted for planning in highly uncertain

environments,

In this chapter, we propose a novel heuristic search online POMDP planning

algorithm intended to address the challenge of planning in highly uncertain environments

where ESU is difficult to reduce. The intuition of our solution is to enable the agent to

reflect on its most pressing needs: reducing either ESU or CRU, then plan actions that

address the greater need. In particular, we propose a novel heuristic called Long

Sequence Entropy Minimization (LSEM) that considers the quality of the agent’s

beliefs about the current environment state in order to plan the long sequences of

information gathering actions necessary to reduce ESU. Then, since the agent knows

how to handle ESU, we employ situational-awareness within the agent’s planning to

www.manaraa.com

122

reflect on the agent’s current uncertainty (both ESU and CRU) to determine which type it

most needs to reduce in order to create a successful plan that leads the agent to both

understand its environment and earn large, cumulative future rewards. With this

situational-awareness, which we call Difference-based Heuristic Selection (DHS), the

agent switches between planning with different heuristics (both our novel LSEM and

state-of-the-art heuristics such as AEMS2 (Ross & Chaib-draa, 2007)) to guide its

planning in order to reduce either ESU or CRU as necessary.

To evaluate our novel algorithm, we compare its performance against state-of-the-

art heuristic search and Monte Carlo search online POMDP planning algorithms within

several classic POMDP benchmarks. We consider both (1) highly uncertain

environments that require long sequences of information gathering actions in order to

demonstrate the challenges created when it is difficult to reduce ESU and the

effectiveness of our approach in dealing with such challenges, and (2) more certain

environments where it is easier to reduce ESU, enabling us to evaluate whether our

approach is still safe to use when traditional planning algorithms are already effective.

We discover that our solution: (1) successfully produces better plans in complex, highly

uncertain environments when the agent was most time constrained (finding plans capable

of achieving positive rewards over 200 times faster than AEMS2 and FHHOP); (2)

earned some of the highest rewards even in an environment that was not highly uncertain;

and (3) variants of DHS with a key property (𝜖-optimality) also achieved good

performance in the highly uncertain but least complex environment where multistage

planning was not necessary. Together these results demonstrate both (i) that our solution

www.manaraa.com

123

appropriately selects heuristics to guide planning based on the agent’s current need, and

(ii) that our solution is safe to use in environments that are not highly uncertain.

The rest of this chapter is organizes as follows. In Section 4.2, we provide the

necessary background on online POMDP planning and state-of-the-art heuristic search

algorithms that are closest in design to our solution. Next, in Section 4.3, we further

describe the problem addressed in this chapter: the challenge of planning in highly

uncertain environments due to the influence of ESU on the quality of planning. Then, in

Section 4.4, we introduce our proposed approach consisting of the LSEM heuristic and

the DHS algorithm designed to balance reducing ESU and CRU to improve online

POMDP planning in highly uncertain environments. In Section 4.5, we describe the

experimental setup used to empirically evaluate the performance of our approach in a

range of benchmark POMDP problems, followed by a discussion of the results of those

experiments in Section 4.6. We conclude by summarizing our research and proposing

interesting future work we intend to explore in Section 4.7.

Of note, this chapter is a significant extension of an earlier conference paper (Eck

and Soh, 2014b), providing more in-depth background, problem, and methodology

discussions, as well as a larger experimental setup and more theoretical and empirical

results.

4.2. Background

4.2.1. Online POMDP Planning

In many real-world domains and applications of intelligent agents and multiagent

systems, pre-planning using offline planning algorithms is infeasible for the agent. For

instance, the problem might be sufficiently large in the size of the state, action, and

www.manaraa.com

124

observation spaces that planning for all possible future belief states is prohibitively

expensive (in both time and especially memory), even with copious amounts of time

available for planning during offline planning. Instead, planning locally around only the

belief state the agent currently holds is more efficient and effective through online

POMDP planning since the latter involves frequently recalculating a plan, and thus the

agent need not worry about belief states not reachable in the near future from its current

belief.

Most online POMDP algorithms follow the same general search procedure to

compute a policy 𝜋. In these algorithms, the agent constructs an AND-OR policy tree

with two types of nodes
15

: OR nodes representing belief states and AND nodes

representing actions. To illustrate, we provide an example tree in Figure 4.1. The tree is

rooted with an OR node for the agent’s current belief state 𝑏𝑐. From this belief state, the

agent can choose to take one of several actions 𝑎 ∈ 𝐴 (e.g., 𝐴 = {𝑎1, 𝑎2} in our

illustrative example). Thus, the node 𝑏𝑐 has branches to corresponding AND nodes for

each action 𝑎 ∈ 𝐴. Since each action can produces multiple observations, each AND

node has a branch for each possible observation 𝑧 ∈ 𝑍 (e.g., 𝑍 = {𝑧1, 𝑧2} in our

illustrative example) leading to a new belief state OR node 𝑏𝑐+1
𝑎,𝑧

. The tree then expands

similarly along these non-root OR nodes.

Online planning itself involves three stages, summarized in Algorithm 4.1. First,

the agent chooses a leaf node in the tree 𝑏𝑐+𝑛
∗ ∈ ℒ (where ℒ represents the set of leaf

nodes in the tree) from which to expand the tree. Second, the agent adds AND nodes for

15

 Given the close relationship between belief states and OR nodes, as well as actions and AND nodes, we

reuse the same notation: 𝑏 represents both a belief state and its corresponding OR node in the policy tree,

and 𝑎 represents both an action and its corresponding AND node in the policy tree.

www.manaraa.com

125

Figure 4.1: (a) Example 𝝅 Tree with Two Actions and Two Observations

with Depth 1, (b) Example Path with Depth 𝒏

PolicySearch(𝒃𝒄, 𝝉)

while TimeSpent()< 𝜏 and not DoneSearching()

 1. 𝑏∗
𝑐+𝑛 = ChooseLeafNode(ℒ)

 2. Expand(𝑏∗
𝑐+𝑛)

 3. UpdateAncestors(𝑏∗
𝑐+𝑛)

end while

return argmax𝑎∈𝐴 𝑄(𝑏𝑐, 𝑎)

Algorithm 4.1: Generic Policy Search Procedure

each action as children to the chosen leaf node, followed by OR nodes for each

observation and resulting belief state from each new AND node. Finally, the agent

calculates the expected rewards at the chosen OR node (that used to be a leaf before the

tree expanded) and propagates this information backwards along the path from the chosen

leaf node to the root of the tree using Eqs. 2.7-2.8 to update the agent’s cumulative

reward estimates. This additional reward information helps reduce the agent’s

www.manaraa.com

126

uncertainty about the cumulative reward expected from different actions in its current

belief state.

Since each iteration of the loop in Algorithm 4.1 iteratively improves the agent’s

cumulative reward estimates, the algorithm can execute in an anytime fashion. Online

planning generally occurs until either (1) the agent has exhausted the amount of time 𝜏

allotted for planning, or (2) some other stopping condition is met, such as the agent is

certain in its estimates of cumulative rewards and further expansion will not further

reduce its CRU.

To account for the fact that rewards beyond a leaf node are initially fully

uncertain, online POMDP planning algorithms can improve cumulative reward

estimations by adding additional a priori value estimates for leaf nodes. Commonly, the

agent maintains upper (𝑄 and 𝑉) and lower (𝑄 and 𝑉) bounds on the discounted,

cumulative rewards from each node using very simple pre-computed policies
16

 estimating

the cumulative rewards from a belief state. In Step 3 of the algorithm, this information is

also propagated back through the tree using analogues of Eqs. 2.7-2.8.

After planning, the agent forms its policy 𝜋 as a subtree of the policy tree,

selecting only the actions maximizing the 𝑄(𝑏, 𝑎) from each belief state 𝑏, using an

analogue of Eq. 2.9. The agent then executes the action within its policy for the current

belief state. Afterwards, the agent can either continue to execute the formed policy for a

number of future actions, or it can recalculate a new policy for its new belief state. Either

is acceptable, although re-planning is commonly done each time the agent must choose

16

 Using algorithms such as Fast Informed Bound (Hauskrecht, 2000) and Blind policy (Hauskrecht, 2000)

for the upper and lower bounds, respectively.

www.manaraa.com

127

an action. For further details about online planning, please consult a recent survey paper

by Ross et al. (2008).

4.2.2. Heuristic Search Algorithms for Online POMDP Planning

The key difference between different types of online POMDP planning algorithms

is how the algorithm selects the leaf belief state 𝑏𝑐+𝑛
∗ ∈ ℒ to expand in Step 1. This is

because Steps 2 and 3 are relatively straightforward — expansion in Step 2 generally

involves the same process (adding child action AND nodes and subsequent belief state

OR nodes), and updating cumulative reward estimates in Step 3 always involves

computing Eqs. 2.7-2.8 (and the analogues for upper and lower bounds) along the path

from the leaf node to the current belief state root 𝑏𝑐.

One very popular type of online POMDP planning algorithm is heuristic search

algorithms. These algorithms use a heuristic function ℎ: 𝛱(𝑆) → ℝ that evaluate the

usefulness of expanding a leaf belief state 𝑏𝑐+𝑛
∗ ∈ ℒ with respect to improving the overall

quality of the agent’s estimates of cumulative rewards and thus its policy. Choosing the

leaf belief state to expand in Step 1 is as simple as finding the leaf that maximizes this

heuristic function:

 𝑏𝑐+𝑛
∗ = 𝑐ℎ𝑜𝑜𝑠𝑒(ℎ) = argmax𝑏𝑐+𝑛∈ℒ ℎ(𝑏𝑐+𝑛) (4.1)

The state-of-the-art heuristic search algorithms use heuristics designed to

minimize the agent’s overall uncertainty in the cumulative rewards (CRU) earned by the

policy formed during planning. That is, they choose to expand the policy tree along leaf

belief states that contribute the most uncertainty to the agent’s cumulative reward

estimations, since expanding the tree at these belief states provides more information

about the cumulative rewards earned along the path from the leaf belief state back to the

www.manaraa.com

128

current belief state at the root of the tree. This additional information can then help

reduce the agent’s CRU along that path, and ultimately in the entire tree.

Within these heuristics, the CRU from a belief state is measured using an error

bound on the value function at that belief state:

 𝑒(𝑏) = 𝑉(𝑏) − 𝑉(𝑏) (4.2)

where 𝑉(𝑏) and 𝑉(𝑏) are the upper and lower bounds on the value function (i.e., upper

and lower bounds on cumulative rewards) from the belief state. Given the definition of

upper and lower bound, we know that

 𝑉(𝑏) ≤ 𝑉∗(𝑏) ≤ 𝑉(𝑏) (4.3)

where 𝑉∗(𝑏) is the optimal reward from a belief state. Thus, minimizing the error bound

𝑒(𝑏) causes the distance between the upper and lower bound to shrink and eventually

both the upper and lower bound estimates will converge to the optimal cumulative reward

under the optimal value function (by the Squeeze Theorem).

Since upper bounds can only decrease and lower bounds can only increase,

choosing to expand a leaf belief state will provide information that can only decrease the

error bound at the root belief state (after propagating new cumulative reward information

back in Step 3 of the algorithm) and thus improves (or does not worsen) the agent’s CRU.

Moreover, choosing to expand the leaf belief state 𝑏𝑐+𝑛 with the greatest error bound

𝑒(𝑏𝑐+𝑛) has the greatest potential to improve the cumulative reward estimate at the root

since this node is causing the greatest CRU in the tree. Thus, choosing to expand the tree

along maximal error bound leaf belief states can help minimize the agent’s overall CRU.

To further improve the quality of planning, the state-of-the-art heuristic search

algorithms also incorporate other information into their heuristics to further refine how

www.manaraa.com

129

the tree expands during planning so that expansions provide the most informative

information to improve the cumulative reward estimations. The first such heuristic,

Anytime Error Minimization Search 2 (AEMS2) (Ross & Chaib-draa, 2007), also

considers the likelihood that the leaf belief state 𝑏𝑐+𝑛 is ever reached from the current

belief state 𝑏𝑐 (so that it can focus planning on the belief states the agent will most likely

experience), as well as optimistically tries to follow paths where the upper bound on the

cumulative rewards is maximized since these paths have the greatest potential to earn the

agent large cumulative rewards, which is the goal of planning in the first place.

Altogether, the AEMS2 heuristic is given by:

 ℎ𝐴𝐸𝑀𝑆2(𝑏𝑐+𝑛) = 𝑒(𝑏𝑐+𝑛) ∏ 𝑤(𝑏𝑐+𝑖, 𝑎𝑖)𝑤(𝑏𝑐+𝑖, 𝑎𝑖, 𝑧𝑖+1)𝑛−1
𝑖=0 (4.4)

where

 𝑤(𝑏, 𝑎) = { 1 if 𝑎 ∈ argmax𝑎′∈𝐴 𝑄(𝑏, 𝑎′)

 0 else
 (4.5)

favors paths maximizing the upper bound on cumulative rewards 𝑄 and

 𝑤(𝑏, 𝑎, 𝑧) = 𝛾𝑃(𝑧 | 𝑎, 𝑏) (4.6)

considers the probability of making observations that lead to next belief states along the

path from the root of the tree to the leaf.

In practice, the AEMS2 algorithm has performed very competitively with state-

of-the-art offline algorithms that do not suffer from the same time constraints on planning

(e.g., Ross & Chaib-draa, 2007; Ross et al., 2008; Silver & Veness, 2010; Somani et al.,

2013; Zhang & Chen, 2012). Moreover, it is also guaranteed to find an 𝜖-optimal policy

(i.e., a policy whose cumulative rewards fall within 𝜖 of the optimal cumulative rewards)

in finite (albeit possibly large) time.

www.manaraa.com

130

More recently, Zhang & Chen (2012) have proposed a complementary heuristic to

work alongside ℎ𝐴𝐸𝑀𝑆2 in order to further speed up planning by reducing the agent’s

CRU even faster. Their heuristic is included in the Fast Hybrid Heuristic Online

Planning (FHHOP) algorithm and instead of optimistically following the upper bound on

cumulative rewards 𝑄, it instead favors paths (1) with high lower bounds on cumulative

rewards 𝑄 that are used in the actual policy creation stage (c.f., last line of Algorithm

4.1), and (2) considers not just maximal paths according to 𝑄, but also near-optimal paths

to increase the number of leaves with non-zero value that might be selected by the

heuristic during each iteration of the planning search algorithm. This heuristic in FHHOP

is given by:

 ℎ𝐹𝐻𝐻𝑂𝑃(𝑏𝑐+𝑛) = 𝑒(𝑏𝑐+𝑛)𝑤1,2(𝑏𝑐+𝑛) ∏ 𝑤(𝑏𝑐+𝑖, 𝑎𝑖, 𝑧𝑖+1
𝑛−1
𝑖=0) (4.7)

where

 𝑤1,2(𝑏𝑐+𝑛) = max𝑖∈[0,𝑛−1] 𝑤2(𝑏𝑐+𝑖, 𝑎𝑖) ∏ 𝑤1(𝑏𝑐+𝑗, 𝑎𝑗)𝑛−1
𝑗=0,𝑗≠𝑖 (4.8)

selects near-optimal paths according to 𝑄, permitting suboptimality in one action through

𝑤2:

 𝑤1(𝑏, 𝑎) = {
 1 if 𝑎 ∈ argmax𝑎′∈𝐴 𝑄(𝑏, 𝑎′)

 0 else
 (4.9)

 𝑤2(𝑏, 𝑎) = {
 1 if 𝑎 ∈ argmax𝑎′∈𝐴𝑆

𝑄(𝑏, 𝑎′)

 0 else
 (4.10)

where

𝐴𝑆 = {𝑎 ∈ 𝐴\ argmax
𝑎′∈𝐴

𝑄(𝑏, 𝑎′) | 𝑄(𝑏, 𝑎) > max
𝑎′′∈𝐴

𝑄(𝑏, 𝑎′′)}

www.manaraa.com

131

represents the second best actions (according to lower bound estimate 𝑄) that aren’t

guaranteed to be suboptimal (i.e., have a lower upper bound than the guaranteed lower

bound of another action) and thus wouldn’t be pruned by branch and bound pruning.

Comparing ℎ𝐴𝐸𝑀𝑆2 and ℎ𝐹𝐻𝐻𝑂𝑃, we note that both aim to reduce the agent’s CRU

by focusing on the error bound on cumulative rewards 𝑒(𝑏). However, they differ in

which paths leading to leaf belief nodes that they favor for reducing such uncertainty.

ℎ𝐴𝐸𝑀𝑆2 optimistically favors paths (and corresponding leaf belief states) that lead to the

most possible reward, whereas ℎ𝐹𝐻𝐻𝑂𝑃 conservatively favors paths (and corresponding

leaf belief states) leading the most guaranteed reward. Unfortunately, due to its

conservative nature, ℎ𝐹𝐻𝐻𝑂𝑃 cannot guarantee that it finds an approximately optimal

policy in finite time.

To combine the best of both heuristics, the FHHOP algorithm (Zhang & Chen,

2012) actually considers both heuristics at the same time. That is, it calculates both

heuristics for all leaf belief states when deciding which leaf belief state 𝑏𝑐+𝑛
∗ ∈ ℒ to

expand. After calculating both, it performs a weighted comparison to bias selection to

favor the heuristic that has best reduced the error bound 𝑒(𝑏) in past iterations. In this

way, the algorithm gains the theoretical benefits of the ℎ𝐴𝐸𝑀𝑆2 heuristic (i.e., finding an

𝜖-optimal policy in finite time) by following the ℎ𝐴𝐸𝑀𝑆2 heuristic often enough, yet it can

possibly find high quality plans faster than AEMS2 by using the ℎ𝐹𝐻𝐻𝑂𝑃 heuristic when

it better guides planning. Moreover, this algorithm learns over time which heuristic to

use in order to best reduce uncertainty in cumulative reward estimations and result in the

best plans for maximizing agent rewards while operating in the environment.

www.manaraa.com

132

Of note, the Factored portion of the FHHOP name refers to the fact that the

algorithm also exploits the state-of-the-art in POMDP representations: the Mixed

Observability Markov Decision Process (MOMDP) (Ong et al., 2010). In a MOMDP,

the state space 𝑆 = 𝒳 × 𝒴 is factored into a set of fully observable states 𝒳 (that are

always directly observed by the agent) and a set of partially observable states 𝒴 (that are

understood through observations 𝑍, as in the traditional POMDP representation, c.f.

Section 2.2.2). Since fully observable states are not hidden, this representation speeds up

several important calculations frequently performed by agents while planning, especially

Eq. 2.4 since only some state variables are hidden and need to be estimated using the

Bayesian belief state. Of course, there is nothing special about this representation that

means that other online POMDP planning algorithms such as AEMS2 or our proposed

solution cannot be used with MOMDPs, so in our experimental setup (c.f., Section 4.5),

we use this representation with all algorithms.

4.3. Problem

Although the ℎ𝐴𝐸𝑀𝑆2 and ℎ𝐹𝐻𝐻𝑂𝑃 heuristics are well designed to reduce agent

uncertainty about cumulative rewards while the agent is planning a policy to control its

actions, they assume that the agent’s uncertainty about the current state of the

environment will simply be resolved by whatever observations are received after taking

actions. That is, the heuristics do not consider any information describing the uncertainty

in the agent’s beliefs about the current environment state when deciding how to expand

the agent’s plan, and instead rely on the Bayesian framework for belief updates (Eq. 2.4)

to handle ESU.

www.manaraa.com

133

In many kinds of environments, this is not a concern, and both the AEMS2 and

FHHOP algorithms have performed quite well on a range of POMDP benchmark

problems (e.g., Ross & Chaib-draa, 2007; Ross et al., 2008; Silver & Veness, 2010;

Somani et al., 2013; Zhang & Chen, 2012) due to several reasons. First, in these

environments, the environment state might be relatively easy to identify, e.g. due to

highly accurate direct observations about the state of the environment, and thus special

care is not needed to deal with ESU. Second, the agent might receive relatively large

rewards or costs based on periodically acting on its knowledge of the environment state.

Thus, planning actions to receive these easily identifiable high rewards naturally requires

planning actions that first perform a small number of information gathering actions to

understand the correct environment state. Finally, if the problem is sufficiently small

(especially in the number of states, but also the number of actions and observations), then

planning might be relatively easy in general.

Unfortunately, there are also many real-world environments and applications of

intelligent agents and multiagent systems where ESU is much more difficult to reduce,

which we term highly uncertain environments. This difficulty could be due to a number

of factors. First, there might be many states of the environment that can generate the

same observation. In which case, such an observation does not help us discriminate

between which is the next state since many possible next states could have generated that

observation. Thus belief updates in Eq. 2.4 are rather uninformative whenever the agent

receives such an observation. For instance, if most states 𝑠′ are equally likely to produce

a recent observation 𝑧 after the recent action 𝑎, then the 𝑂(𝑠′, 𝑎, 𝑧) term will be equal in

www.manaraa.com

134

Eq. 2.4 for each such next state 𝑠′, resulting in minimal changes
17

 to the belief state 𝑏𝑎,𝑧.

Second, each action and next state could generate a large number of possible

observations, meaning that each new observation provides little information about the

next state of the environment after the action is taken. In both scenarios, each belief

update is at risk of providing minimal changes to the agent’s belief state (Eq. 2.4).

As a result of these difficulties, highly uncertain environments generally require

long sequences of information gathering actions in order to properly reduce ESU. This

has two important implications for planning with state-of-the-art heuristic search

algorithms that specialize in reducing CRU: (1) ESU will lead to similar error bound

𝑒(𝑏𝑐+𝑛) values across leaf nodes, causing the state-of-the-art heuristics to fail to

discriminate between “good” and “bad” leaf nodes to expand during planning, and (2)

paths containing the necessary long sequences of information gathering actions often fail

to have maximal upper or lower bound values, causing ℎ𝐴𝐸𝑀𝑆2 and ℎ𝐹𝐻𝐻𝑂𝑃 to initially

ignore these necessary action sequences during policy tree expansion.

First, recall that the error bound 𝑒(𝑏) of a leaf belief state 𝑏 is computed as the

difference between the upper and lower bounds on cumulative rewards (Eq. 4.2):

𝑉(𝑏) − 𝑉(𝑏). For leaf belief states 𝑏𝑐+𝑛, both the upper and lower bounds are

represented by piecewise linear convex vectors called alpha vectors with one alpha

vector 𝛼𝑎 per action 𝑎 (Hauskrecht, 2000). The upper or lower bound is then calculated

as the dot product of the belief state 𝑏𝑐+𝑛 with the alpha vector 𝛼𝑎 giving the greatest

value across the entire set of alpha vectors:

 𝑉(𝑏𝑐+𝑛) = max𝛼𝑎∈𝛢𝑈
𝛼𝑎 ⋅ 𝑏𝑐+𝑛 (4.11)

17

 These small changes only reflect possible state transitions from the 𝑇(𝑠, 𝑎, 𝑠′) component from the prior

belief 𝑏 and do not consider information contained in observations.

www.manaraa.com

135

 𝑉(𝑏𝑐+𝑛) = max𝛼𝑎∈𝛢𝐿
𝛼𝑎 ⋅ 𝑏𝑐+𝑛 (4.12)

where 𝛢𝑈 is the set of alpha vectors for the upper bound, and 𝛢𝐿 is the set of alpha

vectors for the lower bound.

Since the upper and lower bounds of a leaf belief state 𝑏𝑐+𝑛 are computed as dot

products with 𝑏𝑐+𝑛, the upper and lower bound values will be very similar for belief

states that are also similar. As described above, in highly uncertain environments, the

agent’s beliefs will not change much until it has performed a long sequence of

information gathering actions. Hence, after taking any given action and receiving any

given observation, the agent’s next belief will be very similar to its previous belief. Thus,

while expanding the policy tree, a child OR node will have a belief very similar to its

parent OR node, and sibling OR nodes will also have similar beliefs. Therefore, the

upper and lower bounds 𝑉 and 𝑉, and consequently the error bound 𝑒, will be similar

across the leaves of the policy tree until the agent has gathered sufficient information to

reduce its ESU. As a result, the error bound will not appropriately distinguish which

belief states to expand while planning, so existing heuristics relying on the error bound

will be less useful in guiding planning to reduce CRU (due to high amounts of ESU).

Second, in the algorithms used to compute the alpha vectors, such as Fast

Informed Bound (FIB) or QMDP for the upper bound, and Blind for the lower bound

(Hauskrecht, 2000), the algorithms assume full (or near) full observability of the

environment state by transforming the original POMDP to a simpler (fully observable)

MDP model. In which case, information gathering actions have little value to the agent

since it has no ESU. Thus, information gathering actions (which also often incur some

cost in return for information) generally have smaller upper and lower bounds than other

www.manaraa.com

136

actions. Hence, information gathering actions will rarely maximize the upper 𝑄 and

lower 𝑄 bounds on cumulative rewards from an action AND node in the policy tree.

Therefore, the ℎ𝐴𝐸𝑀𝑆2 and ℎ𝐹𝐻𝐻𝑂𝑃 heuristics are also biased (in the 𝑤(𝑏, 𝑎) and

𝑤1,2(𝑏, 𝑎) components, Eqs. 4.5, 4.8-4.10) to not select leaf belief states along paths

containing the necessary long sequences of information gathering actions required to

reduce ESU. Thus, the agent will not discover the large cumulative rewards ultimately

possible after reducing its ESU, and instead long sequences of information gathering

actions will not be performed by the agent while executing its plan.

Overall, both of these problems greatly reduce the effectiveness of state-of-the-art

heuristic search algorithms to create high quality plans for agents operating in highly

uncertain environments, due to their inability to reduce ESU. We note that the 𝜖-optimal

guarantees of AEMS2 and FHHOP (c.f., Section 4.2.2) do imply that eventually the

algorithms will produce near optimal policies, even in highly uncertain environments, but

such policies could take much longer amounts of time than available during online

planning. In the following section, we propose an algorithm that can find good plans

faster using online POMDP planning in highly uncertain environments.

4.4. Solution Approach

In this section, we propose our solution to improve online POMDP planning in

highly uncertain environments where the agent requires long sequences of information

gathering actions in order to reduce uncertainty about the environment state. First, we

describe the intuition for our solution: splitting planning into stages, where each stage

reduces a different type of uncertainty to produce high quality plans for the agent in

limited amounts of time allocated for planning. Second, we introduce a novel heuristic

www.manaraa.com

137

for guiding planning to reduce ESU by biasing policy search towards policies favoring

the necessary long sequences of information gathering. Then, we introduce a

situationally-aware algorithm capable of identifying which planning stage the agent is

currently in so that it knows how to guide its planning using different heuristics. Finally,

we analyze the performance of our algorithm from a theoretical perspective in order to

discover important properties.

4.4.1. Planning Stages

To develop a solution for improving online POMDP planning in highly uncertain

domains, we start with a simple observation. The problem with existing heuristics—that

work very well in environments with less ESU—is that they fail to plan to perform the

necessary long sequences of information gathering actions needed to understand the

environment. If, instead, the agent had a method for planning the needed long sequences

of information gathering actions to reduce ESU, then after those actions were executed,

the agent would be in a position no different from planning in environments that are not

highly uncertain. At this point, existing state-of-the-art heuristics should continue to

work well by planning actions that maximize the agent’s rewards by reducing CRU

during planning.

Based on this observation, we propose splitting planning in highly uncertain

environments into two stages, depicted in Figure 4.2. In the first stage, the agent should

focus on reducing ESU by planning for, then performing, the necessary long sequences of

information gathering actions needed to understand the current state of the agent’s

environment. This enables the agent to move from an initial starting point of high

uncertainty about the environment to a position where the agent has a more certain

www.manaraa.com

138

Figure 4.2: Stages of Planning in Highly Uncertain Environments

understanding of the environment. Afterwards, the agent can exploit this understanding

of the environment in order to quickly reduce its CRU in order to earn the agent large

rewards while operating in the environment. Splitting planning into two such stages has

several advantages.

First, it enables the agent to focus most of its planning efforts towards reducing

one type of uncertainty at a time, based on its most pressing need: first ESU, then CRU.

Second, by focusing on reducing ESU first, the agent will be in a position in Stage

2 where existing heuristics are quite appropriate to guide planning, allowing the agent to

reuse previously reported techniques that have been demonstrated to work well in similar

conditions (e.g., Ross & Chaib-draa, 2007; Ross et al., 2008; Silver & Veness, 2010;

Somani et al., 2013; Zhang & Chen, 2012).

Third, by focusing on reducing ESU first, the agent can achieve beliefs close to

pure certainty where the agent is close (temporarily at least) to full observability, which is

the condition under which the upper bound on agent rewards 𝑉 are calculated using

algorithms such as FIB or QMDP (Hauskrecht, 2000). This implies that following the

sequence of actions that maximize the upper bounds 𝑉 and 𝑄—as favored by the 𝑤(𝑏, 𝑎)

component of ℎ𝐴𝐸𝑀𝑆2—will quickly lead the agent to the sequence of actions that will

also maximize its cumulative rewards. Thus, reducing ESU first can potentially improve

the effectiveness of state-of-the-art heuristics like ℎ𝐴𝐸𝑀𝑆2 in reducing CRU.

www.manaraa.com

139

In order to produce an algorithm that successfully controls online POMDP

planning through both stages in highly uncertain domains, our solution contains two

primary novel contributions. First, we propose a novel heuristic that guides planning to

expand the policy tree during the first stage in order to plan the long sequences of

information gathering actions necessary for ESU reduction. The second stage, on the

other hand, does not need a new heuristic as we can simply reuse the state-of-the-art

heuristics such as ℎ𝐴𝐸𝑀𝑆2 (or ℎ𝐹𝐻𝐻𝑂𝑃) for CRU reduction. Instead, we also contribute a

novel mechanism providing situational-awareness to identify which stage the agent is

currently in, then selects the appropriate heuristic to guide planning.

4.4.2. LSEM Heuristic

In order to guide planning to form policies with long sequences of information

gathering actions necessary to reduce ESU, we propose a novel heuristic called Long

Sequence Entropy Minimization (LSEM). This heuristic directly measures the ESU in

an agent’s belief states so that the agent can identify how confused it would be about the

environment in each belief state, and then expand the policy tree in such a manner that

the agent’s beliefs are most certain and ESU is minimized.

In particular, because a belief state 𝑏 is represented by a probability distribution,

we can directly measure the uncertainty in the agent’s belief using the entropy function

(Araya-Lopez et al., 2010):

 𝐻(𝑏) = − ∑ 𝑏(𝑠) log 𝑏(𝑠)𝑠∈𝑆 (4.13)

which gives us a measure of ESU (in the range [0, log|𝑆|]), similar to the measure for

CRU 𝑒(𝑏).

www.manaraa.com

140

However, unlike 𝑒(𝑏), expanding the policy tree along leaf belief states 𝑏𝑐+𝑛 ∈ ℒ

with greatest 𝐻(𝑏) will not necessarily reduce the overall ESU in the policy. This

critical insight stems from the fact that 𝐻(𝑏) can actually increase from a belief state to

its children (e.g., if the agent receives an observation in evidence of a next state that is

contrary to its current beliefs), whereas 𝑒(𝑏) values can only decrease as the policy tree

is expanded (based on the definition of upper and lower bounds in Eq. 4.2). So, in order

to minimize ESU, we want to select belief states with lower 𝐻(𝑏) values.

Since heuristic search algorithms choose leaf belief states with the highest

heuristic values (Eq. 4.1), we consider instead the agent’s certainty in a belief (which is

the additive inverse of uncertainty):

 𝐶(𝑏) = log|𝑆| − 𝐻(𝑏) (4.14)

which is maximized whenever 𝐻(𝑏) is minimized. Considering 𝐶(𝑏) in a heuristic thus

guides the agent to minimize ESU.

Moreover, just as the ℎ𝐴𝐸𝑀𝑆2 and ℎ𝐹𝐻𝐻𝑂𝑃 heuristics consider more than just the

actual measure of CRU 𝑒(𝑏) in their calculations to more efficiently guide expansion of

the policy tree, we also add additional measures to our LSEM heuristic to quickly reduce

ESU. We explain the designed purpose of each additional component below. Our entire

heuristic is given by:

 ℎ𝐿𝑆𝐸𝑀(𝑏𝑐+𝑛) = 𝐶(𝑏𝑐+𝑛)𝑑(𝑏𝑐+𝑛)𝑉(𝑏𝑐+𝑛) ∏ 𝑤(𝑏𝑐+𝑖, 𝑎𝑖, 𝑧𝑖+1)𝑛−1
𝑖=0 (4.15)

First, the 𝑑(𝑏𝑐+𝑛) term:

 𝑑(𝑏𝑐+𝑛) = 1 + log (𝑛 + 1) (4.16)

biases ℎ𝐿𝑆𝐸𝑀 to favor expanding the tree using deeper leaf belief states to encourage the

long sequences of actions necessary to gather information. Second, the 𝑤(𝑏, 𝑎, 𝑧) terms

www.manaraa.com

141

from Eq. 4.6 favor expanding the most likely leaf belief states so that planning occurs

along the situations the agent is most likely to actually encounter when it follows the

formed policy. Finally, the 𝑉(𝑏𝑐+𝑛) term encourages planning to optimistically explore

policies that have the potential to earn the greatest future cumulative rewards to setup

planning for Stage 2 after ESU is adequately reduced (instead of becoming stuck in local

optima where the agent fully understands the environment state but cannot earn large

future rewards). Of note, we consider 𝑉(𝑏𝑐+𝑛) in ℎ𝐿𝑆𝐸𝑀 instead of the selector 𝑤(𝑏, 𝑎)

that only considers leaf belief states along paths always maximizing upper bound rewards

(Eq. 4.5) as in ℎ𝐴𝐸𝑀𝑆2. This enables ℎ𝐿𝑆𝐸𝑀 to tradeoff some reduction in upper bound

rewards in return for less ESU, relying on planning in Stage 2 to find the best possible

policy for maximizing cumulative rewards.

Within ℎ𝐿𝑆𝐸𝑀, we multiply each component for two reasons. First, it permits us

to avoid having to normalize the values of the different components against one another,

as we would have to do if the components were added together so that one wouldn’t

automatically outweigh the others. This is important because the components have vastly

different ranges: for example, 𝐶(𝑏) has a range of [0, log 𝑆] in all environments whereas

the range of 𝑉(𝑏) is entirely environment-specific. Second, this practice follows in the

tradition of other heuristics, such as state-of-the-art ℎ𝐴𝐸𝑀𝑆2 and ℎ𝐹𝐻𝐻𝑂𝑃.

Analyzing the structure of ℎ𝐿𝑆𝐸𝑀, we note that it has several valuable properties

for guiding planning in Stage 1 of our proposed solution. First, each component has a

non-negative range. Thus, the entire product is non-negative and increases for leaf belief

states occurring along sequences of actions that perform long sequences of information

gathering needed by the agent in Stage 1. Therefore, ℎ𝐿𝑆𝐸𝑀 is maximized exactly for the

www.manaraa.com

142

leaf belief states that best guide planning to reduce ESU. Second, 𝑑(𝑏𝑐+𝑛) has a

diminishing returns property, meaning that as 𝑛 increases, 𝑑(𝑏𝑐+𝑛) increases less and

less. Thus, further and further increasing the depth at which the policy tree is expanded

contributes less and less increase in the heuristic value. This implies that the heuristic

will avoid maximizing the depth of planning at the expense of the other components. So

although long sequences of information gathering are beneficial, the heuristic will still

expand leaf belief states closer to the root of the tree if those leaf belief states offer more

promising reductions in ESU, as desired.

4.4.3. DHS Situational-Awareness

Although our proposed LSEM heuristic is designed to successfully guide planning

during State 1—ESU reduction—it is not as well designed to reduce CRU in Stage 2.

This is because it does not directly consider CRU as measured by 𝑒(𝑏), which is

orthogonal to ESU 𝐻(𝑏) (although high levels of 𝐻(𝑏) make it harder to reduce 𝑒(𝑏),

c.f., Section 4.3). Therefore, planning solely with ℎ𝐿𝑆𝐸𝑀 is not ideal. Instead, we

propose using different heuristics for each stage of planning to best exploit the unique

advantages of each heuristic and produce the best quality plans.

However, deciding which heuristic to use while planning is not a trivial problem.

If we identify different heuristics as being best employed in different stages, such as

ℎ𝐿𝑆𝐸𝑀 in Stage 1 and ℎ𝐴𝐸𝑀𝑆2 in Stage 2, then the agent must be aware of which stage it is

currently in while planning so that it knows which heuristic to use to guide policy tree

expansion.

Ideally, we could just add our ℎ𝐿𝑆𝐸𝑀 heuristic to existing algorithms that already

consider multiple heuristics to improve online POMDP planning. As briefly described in

www.manaraa.com

143

Section 4.2.2, the FHHOP algorithm (Zhang & Chen, 2012) was the first heuristic search

online POMDP algorithm to tradeoff between different heuristics during planning. In

FHHOP, the algorithm learns which heuristic to use (ℎ𝐴𝐸𝑀𝑆2 or ℎ𝐹𝐻𝐻𝑂𝑃) based on their

past successes in reducing CRU. Unfortunately, this approach has two key problems that

prevent it from being readily adapted to accept other heuristics, such as ℎ𝐿𝑆𝐸𝑀. First,

FHHOP relies on the fact that both heuristics it considers are working towards the same

goal—CRU reduction by minimizing 𝑒(𝑏). Thus, their learned past successes can be

directly compared—the agent can compare how well each reduced a single objective:

𝑒(𝑏). Since other heuristics such as ℎ𝐿𝑆𝐸𝑀 are working towards a different goal with a

different objective, it is unclear how to compare the success of ℎ𝐿𝑆𝐸𝑀 in reducing ESU

𝐻(𝑏) against the success of ℎ𝐴𝐸𝑀𝑆2 or ℎ𝐹𝐻𝐻𝑂𝑃 in reducing CRU 𝑒(𝑏). Second, both

ℎ𝐴𝐸𝑀𝑆2 and ℎ𝐹𝐻𝐻𝑂𝑃 measure very similar information about leaf belief states: (1) error

bound 𝑒(𝑏𝑐+𝑛), (2) the probability of observations leading to 𝑏𝑐+𝑛, and (3) whether or

not the path from the root node 𝑏𝑐 to 𝑏𝑐+𝑛 is optimal (or near optimal) with respect to the

upper or lower bounds on cumulative rewards. Thus, the two heuristics naturally have

the same ranges and do not require any kind of normalization to compare their values

when choosing a heuristic for policy tree expansion. Other heuristics such as ℎ𝐿𝑆𝐸𝑀 have

very different ranges, and it is unclear how to normalize each heuristic to make any

comparisons between their values fair and impartial. Together, these problems make it

very difficult to add additional heuristics to FHHOP without modifying the way the

algorithm chooses between heuristics when expanding the agent’s policy tree.

Identifying Current Stage. To decide instead how to select which heuristic to use

for guiding planning based on the agent’s current situation (either Stage 1 or Stage 2), we

www.manaraa.com

144

start by considering the differences between the two proposed stages for planning. We

observe that in Stage 1, the key objective is to reduce the agent’s uncertainty about the

current state of the environment (ESU), measured by 𝐻(𝑏). As this type of uncertainty is

reduced, the values of 𝐻(𝑏) will change from almost pure uncertainty to very low levels

of uncertainty. At the same time, during Stage 1, the agent’s measure of CRU 𝑒(𝑏) will

not change very much, as identified as a key problem for state-of-the-art heuristics in

Section 4.3. Therefore, in Stage 1, 𝐻(𝑏) will change much more than 𝑒(𝑏).

Likewise, in Stage 2, the key objective is to reduce the agent’s uncertainty about

its cumulative rewards (CRU), measured by 𝑒(𝑏). As this type of uncertainty is reduced,

the values of 𝑒(𝑏) will change from very high values (where the upper 𝑉(𝑏) and lower

𝑉(𝑏) bounds are far apart) to very low values (where 𝑉(𝑏) and 𝑉(𝑏) become closer and

closer to 𝑉∗(𝑏)), as discussed in Section 4.2.2 (for Eq. 4.3). At the same time, the agent

will already have low amounts of ESU 𝐻(𝑏) (which was already resolved in Stage 1), so

this type of uncertainty will not change much. Thus, in Stage 2, 𝑒(𝑏) will change much

more than 𝐻(𝑏).

Based on these observations, we can design an algorithm for choosing an

appropriate heuristic to use to guide planning through the two stages necessary in highly

uncertain environments. In Stage 1, when 𝐻(𝑏) is changing as the policy tree expands,

then its additive inverse 𝐶(𝑏) is also changing, so the ℎ𝐿𝑆𝐸𝑀 values will be changing

more than ℎ𝐴𝐸𝑀𝑆2 (which relies on 𝑒(𝑏) that does not change much in Stage 1).

Likewise, in Stage 2, 𝑒(𝑏) is changing as the policy tree expands, so ℎ𝐴𝐸𝑀𝑆2 will be

changing more than ℎ𝐿𝑆𝐸𝑀 (which relies on 𝐶(𝑏) that does not change much in Stage 2).

Therefore, by comparing the change in values of the heuristics, the agent can identify

www.manaraa.com

145

both (1) which stage of planning it currently faces, and (2) which heuristic is most

appropriate for that stage.

To calculate and then compare the changes in values for the different heuristics,

we consider the following general process, summarized in Algorithm 4.2. For each

ℎ𝑗 ∈ {ℎ1, ℎ2, … , ℎ𝑘} (where the agent considers 𝑘 heuristics), the agent calculates the

heuristic value ℎ𝑗(𝑏𝑐+𝑛) for all 𝑏𝑐+𝑛 ∈ ℒ, then picks the leaf belief state maximizing each

heuristic:

 𝑏𝑐+𝑛
𝑗

= 𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗) (4.17)

where the 𝑐ℎ𝑜𝑜𝑠𝑒 function is defined in Eq. 4.1. Next, the agent compares the heuristic

value at the chosen leaf belief state 𝑏𝑐+𝑛
𝑗

 and its parent belief state 𝑏𝑐+𝑛−1
𝑗

in the path back

to the root of the tree 𝑏𝑐 to compute how much the (undiscounted
18

) heuristic value

changed when the parent node 𝑏𝑐+𝑛−1
𝑗

 was expanded previously to add the chosen leaf

belief state 𝑏𝑐+𝑛
𝑗

:

 𝛥ℎ𝑗
= [ℎ𝑗(𝑏𝑐+𝑛

𝑗
)/𝛾 − ℎ𝑗(𝑏𝑐+𝑛−1

𝑗
)]/ℎ𝑗(𝑏𝑐+𝑛−1

𝑗
) (4.18)

for heuristics that increase as the agent reduces the corresponding type of uncertainty,

such as ℎ𝐿𝑆𝐸𝑀, and

 𝛥ℎ𝑗
= |ℎ𝑗(𝑏𝑐+𝑛

𝑗
)/𝛾 − ℎ𝑗(𝑏𝑐+𝑛−1

𝑗
)|/ℎ𝑗(𝑏𝑐+𝑛−1

𝑗
) (4.19)

for heuristics that monotonically decrease as the agent reduces the corresponding type of

uncertainty, such as error-bound 𝑒(𝑏) based heuristics (e.g., ℎ𝐴𝐸𝑀𝑆2).

Based on Eqs. 4.18-4.19, we observe that the higher the value of 𝛥ℎ𝑗
, both (1) the

more the heuristic is changing, and (2) the more appropriate the heuristic is for the

18

 We divide the ℎ𝑗(𝑏𝑐+𝑛
𝑗

) term by 𝛾 in Eqs. 25-26 to remove the difference caused solely by discounting in

𝑤(𝑏, 𝑎, 𝑧), as opposed to the actual change in the heuristic values.

www.manaraa.com

146

ChooseLeafNodeUsing DHS(ℒ)

// find the leaf belief states maximizing each heuristic

for 𝑗 ∈ {1, 2, … , 𝑘}

 𝑏𝑐+𝑛
𝑗

← 𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗) // Eq. 4.1

end for

// compute the change in heuristic values along the chosen leaf belief states

for 𝑗 ∈ {1, 2, … , 𝑘}

 Compute 𝛥ℎ𝑗
 using Eq. 4.18-4.19 with 𝑏𝑐+𝑛

𝑗

end for

// choose the heuristic with maximum change weighted by the rewards upper bound

ℎ∗ ← 𝑛𝑢𝑙𝑙
𝑚𝑎𝑥𝛥 ← −∞

for 𝑗 ∈ {1, 2, … , 𝑘}
 // Eq. 4.20

 𝑑ℎ𝑠 ← 𝛥ℎ𝑗
𝑉(𝑏𝑐+𝑛

𝑗
)

 if 𝑑ℎ𝑠 > 𝑚𝑎𝑥𝛥 then

 𝑚𝑎𝑥𝛥 ← 𝑑ℎ𝑠

 ℎ∗ ← ℎ𝑗

 end if

end for

return 𝑐ℎ𝑜𝑜𝑠𝑒(ℎ∗) // Eq. 4.21

Algorithm 4.2: DHS Situationally-Aware Mechanism for

Choosing the Leaf Node to Expand in Algorithm 4.1

current stage of planning. On the one hand, when 𝛥ℎ𝐿𝑆𝐸𝑀
> 𝛥ℎ𝐴𝐸𝑀𝑆2

, then the agent is

in Stage 1 and ℎ𝐿𝑆𝐸𝑀 is the better heuristic to use to reduce the agent’s most pressing

uncertainty: ESU. On the other hand, when 𝛥ℎ𝐴𝐸𝑀𝑆2
> 𝛥ℎ𝐿𝑆𝐸𝑀

, then the agent is in

Stage 2 and ℎ𝐴𝐸𝑀𝑆2 is the better heuristic to use to reduce the agent’s most pressing

uncertainty: CRU. Moreover, state-of-the-art heuristics (AEMS2, FHHOP) and our

LSEM heuristic each assume that the best policies occur along paths where the heuristic

values are greatest, so the fastest improving leaves (as measured by the 𝛥ℎ𝑗
 function, Eqs.

4.18-4.19) represent the best possible branches to expand. Since this mechanism makes

decisions based on the differences in heuristic values from leaf belief states to their

www.manaraa.com

147

parents as a measure of the rate of change in a heuristic, we call our situationally-aware

heuristic selection mechanism Difference-based Heuristic Selection (DHS).

Transition between Stages. As a final step of our mechanism for selecting

heuristics to use to guide planning, we want to smooth out the transition between the two

stages of planning. That is, we want to improve planning when the agent is nearing the

end of Stage 1 and starting to begin Stage 2. At this point, the change in values 𝛥ℎ𝐿𝑆𝐸𝑀

will be decreasing towards zero (as environment certainty is resolved) and 𝛥ℎ𝐴𝐸𝑀𝑆2
 will

be starting to increase away from zero (as CRU starts to become reduced). When this

happens, both heuristics look similarly appropriate (i.e., 𝛥ℎ𝐿𝑆𝐸𝑀
≈ 𝛥ℎ𝐴𝐸𝑀𝑆2

), so it

becomes difficult to properly choose one over the other. Moreover, towards the end of

Stage 1 ℎ𝐿𝑆𝐸𝑀 might inspire the agent to reduce ESU farther than it needs to for ℎ𝐴𝐸𝑀𝑆2

to finish planning the proper sequence of actions to take that maximize cumulative

rewards, which we want to avoid.

To handle this transition between planning stages, the following equation

represents the final rule for selecting between heuristics in DHS:

 ℎ∗ = argmax𝑗∈{1,2,…,𝑘} 𝛥ℎ𝑗
𝑉 (𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗)) (4.20)

and the algorithm selects the following leaf belief state to expand in each iteration of the

planning algorithm (Algorithm 4.1, c.f., Section 4.2.1):

 𝑏𝑐+𝑛
∗ = 𝑐ℎ𝑜𝑜𝑠𝑒(ℎ∗) (4.21)

The rationale behind Eqs. 4.20 and 4.21 is as follows. Here, we optimistically

bias the heuristic selection based on the upper bound on cumulative rewards expected

from the leaf belief state favored by the selected heuristic (similar to optimistic biasing in

www.manaraa.com

148

offline algorithms such as HSVI (Smith & Simmons, 2004) or online algorithms such as

AEMS2 (Ross & Chaib-draa, 2007)). Thus, when planning transitions between Stage 1

and Stage 2 and the 𝛥ℎ𝑗
 values for the heuristics approach one another, the agent favors

planning along paths of actions that have the potential to lead to greater cumulative

future rewards, since earning such rewards is the ultimate goal of the agent (towards

which the agent strives in Stage 2 of planning).

Of note, our situationally aware DHS solution is somewhat related to another

POMDP planning algorithm used in the context of multiagent I-POMDPs: bimodal

switching (Sonu & Doshi, 2013). In particular, Sonu & Doshi’s solution metacognitively

analyzes the agent’s CRU to decide how to plan: either in the simpler single agent case

(to quickly reduce CRU) or in the more complicated multiagent case (to achieve even

greater rewards by taking into account other agents’ actions). Our DHS solution is

similar in that it also metacognitively chooses how to plan to reduce uncertainty (both

ESU and CRU), but we do not consider CRU directly when switching stages, nor do we

consider multiagent planning. Instead, we improve single agent planning by splitting

planning into stages each considering the same complexity but different objectives, rather

than different complexities (single agent vs. multiagent) with the same objective.

4.4.4. Theoretical Analysis

Finally, now that we have described our solution consisting of both the LSEM

heuristic and DHS algorithm for choosing the heuristic to guide planning, we discuss the

theoretical properties of the solution.

Namely, recall from Section 4.2.2 that state-of-the-art heuristic search online

POMDP planning algorithms AEMS2 (Ross & Chaib-draa, 2007) and FHHOP (Zhang &

www.manaraa.com

149

Chen, 2012) have the beneficial property of being 𝜖-optimal, meaning that they can

return a policy with expected value within a desired 𝜖 of the value of the optimal policy

using only a finite (albeit possibly large) amount of time for planning. Thus, given

enough planning time, the algorithms are guaranteed to find a very good approximation

of the optimal policy (we reuse notation here to term such a policy an 𝜖-optimal policy),

which is a desirable property of an anytime planning algorithm. We desire that our

solution also have this property.

Unfortunately, the DHS approach to selecting the leaf belief state to expand as

presented in Algorithm 4.2 (used as Step 1 of Algorithm 4.1) and defined by Eqs. 4.20-

4.21 cannot guarantee this property in its current form. This is due to (1) the inclusion of

the ℎ𝐿𝑆𝐸𝑀 heuristic that is only designed to reduce ESU and will not necessarily reduce

CRU to less than a desired 𝜖 throughout the policy tree, and (2) we cannot guarantee that

DHS will not choose ℎ𝐿𝑆𝐸𝑀 an infinite number of times and in turn not choose ℎ𝐴𝐸𝑀𝑆2

often enough to find an 𝜖-optimal policy. Therefore, we cannot guarantee that DHS is 𝜖-

optimal, but in practice (as we will test in the following experimental setup) it still should

call ℎ𝐴𝐸𝑀𝑆2 sufficiently often to properly guide planning toward good estimations of

cumulative rewards.

On the other hand, we can modify Eq. 4.20 slightly to produce variants of DHS

that are guaranteed to be 𝜖-optimal. We propose two such variants here: (1) DHS-m, and

(2) SoftMaxDHS.

First, DHS-m is a minor modification of Eq. 4.20 that deterministically forces

ℎ𝐴𝐸𝑀𝑆2 to be chosen often enough to guarantee that the algorithm is 𝜖-optimal:

 ℎ∗ = {
ℎ𝐴𝐸𝑀𝑆2 if 𝑁 mod 𝑚 = 0
ℎ∗ selected by Eq. 4.20 otherwise

 (4.22)

www.manaraa.com

150

where 𝑁 is the number of times the policy tree has been expanded and 𝑚 ∈ ℕ is any

natural number. For DHS-m, we find that:

Theorem 4.1: DHS-m using Eq. 4.22 is 𝜖-optimal, so long as ℎ𝐴𝐸𝑀𝑆2 is

one of the heuristics available to the selection mechanism.

Proof: Let 𝜖 be given. AEMS2, which also follows Algorithm 4.1, is 𝜖-optimal,

so it will find an 𝜖-optimal policy in a finite number of iterations 𝑀 < ∞. Hence,

choosing ℎ𝐴𝐸𝑀𝑆2 within 𝑀 iterations in Step 1 of the loop in Algorithm 4.1 results in a 𝜖-

optimal policy. DHS-m is guaranteed to choose ℎ𝐴𝐸𝑀𝑆2 𝑀 times within 𝑚𝑀 iterations,

simulating at worst the behavior of AEMS2 during the 𝑀 iterations that ℎ𝐴𝐸𝑀𝑆2 is

selected. We know that 𝑚𝑀 < ∞ since 𝑚 ∈ ℕ and 𝑀 < ∞, so DHS-m will also find an

𝜖-optimal policy in finite time. Since 𝜖 was arbitrary, DHS-m is 𝜖-optimal. ∎

The value chosen for 𝑚 in DHS-m (Eq. 4.22) has several important implications

on the behavior of the algorithm. With a smaller 𝑚, the upper bound on the number of

iterations (𝑚𝑀) required to find an 𝜖-optimal policy in a smaller than using a larger 𝑚.

However, a smaller 𝑚 also causes ℎ𝐴𝐸𝑀𝑆2 to be chosen much more often than it might be

in original DHS (and thus used more often in Stage 1 of planning where it is less

effective than ℎ𝐿𝑆𝐸𝑀). As a result, DHS-m might be less efficient in practice, where a

greater use of ℎ𝐿𝑆𝐸𝑀 in Stage 1 could speed up planning by focusing policy tree

expansion around the necessary long sequences of information gathering actions needed

to reduce ESU.

As a starting point (also used in our experimental setup to follow), we suggest

setting 𝑚 = 𝑘, the number of heuristics considered by the selection mechanism, in DHS-

m. In the future, we intend to explore methods for adapting this parameter within the

algorithm, rather than requiring a static choice in advance. For example, 𝑚 could be set

www.manaraa.com

151

proportional to 𝐻(𝑏𝑐), where a larger 𝑚 would occur when the agent’s current belief is

most uncertain about the current state of the environment, allowing the algorithm to rely

more often on ℎ𝐿𝑆𝐸𝑀 which addresses its greatest need. Likewise, a smaller 𝑚 would

occur when the agent is more certain about the environment, and ℎ𝐴𝐸𝑀𝑆2 (which is

chosen more often when 𝑚 is small) is more useful for guiding planning. Alternatively,

when the agent is facing high costs for actions, a smaller 𝑚 would enable the agent to

focus more on improving its estimates of cumulative rewards to reduce overall costs by

choosing ℎ𝐴𝐸𝑀𝑆2 more often.

Second, in contrast to deterministic DHS-m, SoftMaxDHS represents a stochastic

variant of DHS that relies on the values of 𝛥ℎ𝑗
𝑉 (𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗)) to have a greater

influence on the heuristic selected, following closer in spirit to the original DHS

mechanism. In SoftMaxDHS, we replace Eq. 4.20 with:

 ℎ∗~𝑃(ℎ𝑗) =
𝑒

𝛥ℎ𝑗𝑉(𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗))/𝛵

∑ 𝑒
𝛥ℎ𝑖𝑉(𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑖))/𝛵

𝑖∈{1,2,…,𝑘}

 (4.23)

Here, ℎ∗ is randomly sampled according to a probability distribution 𝑃(ℎ𝑗). We

call this approach SoftMaxDHS because it uses the softmax function (commonly used in

reinforcement learning and elsewhere in the agents literature, e.g. (Kaelbling, Littman, &

Moore, 1996; Sutton & Barto, 1998)) to determine the Boltzmann (or Gibbs) probability

distribution 𝑃(ℎ𝑗). Two key properties of this probability distribution are: (1) the

probability of sampling ℎ𝑗 increases as 𝛥ℎ𝑗
𝑉 (𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗)) increases, fitting with the

original definition of DHS and Eq. 4.20, and (2) the probability of each ℎ𝑗 is always

www.manaraa.com

152

greater than 0 since 𝛥ℎ𝑗
𝑉 (𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗)) is always finite and thus 𝑒

𝛥ℎ𝑗𝑉(𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗))/Τ
>

0.

Given Eq. 4.23, we find that:

Theorem 4.2: SoftMaxDHS is 𝜖-optimal, so long as ℎ𝐴𝐸𝑀𝑆2 is one of the

heuristics available for selection.

Proof: The original proof by Ross, Pineau, & Chaib-draa (2008) for the 𝜖-

optimality of AEMS2 contains a theorem (Theorem 2 (Ross, Pineau, & Chaib-draa ,

2008)) stating that if the path from the root belief state 𝑏𝑐 consisting only of actions with

maximal 𝑄 has a non-zero probability of being expanded in Step 1 of each iteration of

Algorithm 4.1, then the algorithm is 𝜖-optimal. We know that ℎ𝐴𝐸𝑀𝑆2 only selects such

paths for expansion due to the 𝑤(𝑏, 𝑎) component. Thus, the probability of ℎ𝐴𝐸𝑀𝑆2

choosing such a path for expansion is 1.0. Moreover, in SoftMaxDHS, we know that the

probability of ℎ𝐴𝐸𝑀𝑆2 being used to guide policy tree expansion is 𝑃(ℎ𝐴𝐸𝑀𝑆2) > 0.

Hence, in each iteration of Algorithm 4.1, SoftMaxDHS chooses to expand the path from

the root belief state 𝑏𝑐 consisting only of actions with maximal 𝑄 with probability

𝑃(ℎ𝑗) > 0. Since this probability is non-zero, SoftMaxDHS is 𝜖-optimal. ∎

Like with DHS-m, the behavior of SoftMaxDHS depends on an internal

parameter 𝛵. Here, as in other softmax-based algorithms, 𝛵 defines how sensitive the

probability distribution 𝑃(ℎ𝑗) is to the values of 𝛥ℎ𝑗
𝑉 (𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗)). The smaller the 𝛵,

the more greedily the distribution favors the heuristic ℎ𝑗 with the greatest

𝛥ℎ𝑗
𝑉 (𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗)). On the other hand, the larger the 𝛵, the closer the distribution

approaches a uniform distribution. In practice, the best value of 𝛵 depends on the

www.manaraa.com

153

environment (and the range of values of 𝑉), so this parameter would need to be fine-

tuned for each environment. We perform such fine-tuning in our experiments to follow.

4.5. Experimental Setup

To evaluate the performance of our solution contributing the LSEM heuristic and

DHS algorithm, we conducted an experimental study using several commonly used, well-

known POMDP benchmark problems: AUVNavigation (Ong et al., 2010), Tag (Pineau,

Gordon, & Thrun, 2003), and RockSample (Smith & Simmons, 2004). These

benchmarks vary in their complexity and level of uncertainty, as described below. The

goals of our study were (1) to demonstrate the problems associated with online POMDP

planning in highly uncertain domains, (2) evaluate the ability of our solution (and the

variants of DHS discussed in Section 4.4.4) to improve such planning by splitting

planning into two stages for addressing the two main types of uncertainty facing the agent

(ESU and CRU), and (3) evaluate the ability of our solution to adapt to the environment

by studying how well it performs when the agent doesn’t face high levels of ESU,

contrary to the rationales for its design.

First, in the AUVNavigation benchmark (Ong et al., 2010), an autonomous

underwater vehicle must navigate through a 3D grid (with size 20 × 7 × 4) to move from

an unknown starting location, through a maze of dangerous rocks that could destroy the

vehicle, to either of two known goal locations (on the opposite side of the world from the

starting location). To reach a goal location, the agent can perform six actions: Stay and

not move at all, turn Up, Down, Left, or Right to change its 3D orientation, or move

Forward along its current orientation. The agent might change location after every

action, even if it doesn’t move forward, due to dynamic underwater currents. The agent

www.manaraa.com

154

can always fully observe its depth and orientation in the grid, but its (𝑥, 𝑦) position is

hidden from the agent unless it goes to the surface of the water, in which case it incurs a

high cost (-50) in return for a perfect observation about its (𝑥, 𝑦) location using a GPS

sensor. When the agent is not on the surface, it instead receives one of four observations

in every other state: Rock if it hits a rock, End if it reaches a goal location, Blind in every

other location, and Terminal upon ending execution. Moving incurs increasing costs

based on the number of dimensions the agent moves in according to its orientation (-1 for

one dimension, -1.44 for two dimensions, -1.73 for three dimensions), hitting a rock

incurs a much larger cost (-500) and ends execution on the next step, but reaching a goal

location earns a very large reward (+5000) and also ends execution on the next step. The

agent’s goal is to reach the goal location as fast as possible while minimizing costs for

moving around.

Second, in the Tag benchmark (Pineau, Gordon, & Thrun, 2003), a robotic agent

moves in a 2D grid (consisting of 29 possible locations) in order to find and tag an

opponent robot. The tagger can move in each cardinal direction (North, South, East,

West) as well as try and Tag the opponent, which succeeds if both agents are in the same

location. Movement is deterministic and incurs a cost of -1, whereas successfully tagging

the opponent earns a reward of +10 and ends execution, but an unsuccessful Tag action

incurs a cost of -10. The tagger always fully observes its own location, but the

opponent’s location is hidden from the tagger robot, and the tagger can only receive one

of two observations after each action: True if both robots are in the same location, and

False in all other states. The opponent, on the other hand, fully observes the tagger robot

www.manaraa.com

155

and tries to move away from the tagger in each time step. The tagger’s goal is to find and

tag the opponent as fast as possible.

Finally, in the RockSample benchmark (Smith & Simmons, 2004), a robotic agent

must navigate through a 𝑔 × 𝑔 2D grid containing 𝑘 rocks. In our study, we consider the

popular setting of 𝑔 = 7 and 𝑘 = 8 (e.g., Ross & Chaib-draa, 2007; Ross et al., 2008;

Silver & Veness, 2010; Somani et al., 2013; Zhang & Chen, 2012). The robot always

fully observes its current location, but the quality of the 𝑘 rocks are hidden by the

environment’s partial observability. The robot is tasked with identifying and sampling

rocks with good quality and not sampling rocks with bad quality. To accomplish this

goal, the agent can move in each cardinal direction (North, South, East, West), check the

quality of each rock (using a separate Check action for each of the 𝑘 rocks), or Sample

the rock in the robot’s current location. Execution ends whenever the robot moves off the

east side of the grid. Checking the quality of a rock returns an observation about that

rock from the set 𝑍 = {𝐺𝑜𝑜𝑑, 𝐵𝑎𝑑}, where the accuracy of the observation depends on

the robot’s distance from the rock (where farther distances 𝑑 produce less accurate

observations according to accuracy function 𝑎𝑐𝑐 = 0.5 + 2−1−
𝑑

20). All other actions

produce the same observation (Bad). The robot earns a reward for Sampling good rocks

of +10, a penalty of Sampling bad rocks of -10, and a reward of +10 for moving off the

grid to end execution. Each rock automatically changes state to Bad after it is sampled to

prevent the robot from sampling the same rock multiple times. The robot’s goal is to

sample all (and only) good rocks, then exit the grid as fast as possible.

Comparing these three benchmarks, we note that they differ in their levels of

uncertainty, especially ESU, making them an interesting range of environments for

www.manaraa.com

156

evaluating our solution approach. Specifically, both AUVNavigation and Tag are highly

uncertain environments, whereas RockSample has much lower levels of ESU.

In particular, the agent in AUVNavigation faces high levels of ESU because it

only receives observations about its (𝑥, 𝑦) location in a small number of states (i.e., along

the surface of the water), which is necessary knowledge for planning a series of

movement actions to reach a goal location. Indeed, the fact that the majority of locations

(i.e., non-surface, non-rock, and non-goal locations) produce the same observation

(Blind) means that most observations do not improve the agent’s beliefs about the hidden

environment state (including the agent’s location), as discussed in Section 4.3. Instead,

the agent must plan a lengthy sequence of information gathering actions in order to just

discover the (𝑥, 𝑦) location (e.g., by turning and moving to the surface of the water)

before it can plan actions needed to reach the goal location. Moreover, this sequence of

information gathering actions incurs costs for both moving and surfacing, causing such

actions fail to maximize the initial upper and lower bounds on cumulative rewards.

Therefore, AUVNavigation is a prime example of the highly uncertain environments

studied in this research.

Similar to AUVNavigation, Tag is also highly uncertain because the tagger robot

rarely knows the location of the opponent (unless they are in the same location), and most

states produce the same observation, which prevents the belief updates (Eq. 2.4) from

being very informative (c.f., Section 4.3). Thus, Tag might also benefit from splitting

planning into two stages to enable the tagger agent to plan to reduce ESU (i.e., the

location of the opponent) before reducing CRU. However, as hypothesized in Section

www.manaraa.com

157

4.3, Tag might also not need special treatment, in spite of high levels of ESU, because the

problem is relatively small (as compared below).

Unlike AUVNavigation and Tag, RockSample is not highly uncertain because the

agent can improve its understanding of the current environment state from any state

through the various Check actions. Moreover, the although the accuracy of the

observations depends on the distance between the robot and a rock—meaning

observations for some states are less accurate than others—the minimal possible accuracy

is still pretty high for 𝑔 = 7: 0.5 + 2−1−
12

20 = 83%. Thus, the agent only needs very short

sequences of information gathering actions in order to reduce its uncertainty about the

quality of each rock, and thus its ESU.

Further comparing these three benchmarks, we note that they also differ greatly in

their complexity. First, AUVNavigation is the most complex, containing 13,536 states

(describing the vehicle’s location, depth, and orientation), 6 actions, and most notably,

144 possible observations. Second, RockSample is moderately complex, containing

12,545 states (describing the robot’s location and the quality of the 8 rocks), 13 actions,

and only 2 observations. Finally, Tag is the least complex, containing only 870 states

(describing the tagger and opponent’s locations), 5 actions, and only 2 observations.

To evaluate the ability of our DHS solution (and variants
19

) to perform online

POMDP planning in these three benchmarks, we measured success using the cumulative,

discounted rewards actually earned by the agent while operating in the environment:

 ∑ 𝛾𝑡𝑟𝑡
∞
𝑡=0 (4.24)

19

 For DHS-m, we used the setting of 𝑚 = 2 since we considered two heuristics during planning (one per

stage). For SoftMaxDHS, we optimized the 𝛵 parameter per benchmark by first searching in steps of 10,

then within a step of 10, using 𝜏 = 5000 for AUVNavigation and 𝜏 = 100 for Tag and RockSample. This

resulted in 𝛵 = 0.5, 1000, 2 for AUVNavigation, Tag, and RockSample, respectively.

www.manaraa.com

158

as typically used to evaluate POMDP planning, with the common setting of 𝛾 = 0.95.

Using this measure, we compared the performance of each of our DHS variants (using

both ℎ𝐿𝑆𝐸𝑀 and ℎ𝐴𝐸𝑀𝑆2 as the two heuristics used for planning) against the state-of-the-

art heuristic search online POMDP planning algorithms: AEMS2 (Ross & Chaib-draa,

2007) and FHHOP (Zhang & Chen, 2012) (c.f., Section 4.2.2). For the sake of

completeness, we also compared against the state-of-the-art Monte Carlo search

algorithms for online POMDP planning: ABDESPOT (Anytime Basic DEterminized

Sparse Partially Observable Tree) and ARDESPOT
20

 (Anytime Regularized

DEterminized Sparse Partially Observable Tree) (Somani et al., 2013), which represent

the other state-of-the-art algorithms in online POMDP planning. These Monte Carlo

algorithms consider very similar information as AEMS2 when guiding online planning,

except they use random sampling of state transitions for action sequences both to

estimate cumulative rewards and approximate the agent’s belief state using a particle

filter (i.e., an approximation of the belief state probability distribution using frequentist

counting of randomly sampled next states, used to speed up planning in environments

with large state spaces). Finally, we also considered an algorithm using only our LSEM

heuristic to guide planning to gain insights into the usefulness of this heuristic alone. To

ensure fair comparison, all approaches used FIB and Blind (Hauskrecht, 2000) to

calculate the upper and lower bounds on leaf belief states 𝑉(𝑏𝑐+𝑛) and 𝑉(𝑏𝑐+𝑛).

For each benchmark, we considered a range of amounts of time allocated for

planning 𝜏 in order to better understand how well each online planning algorithm handles

20

 For ARDESPOT, we reused the 𝜆 regularization parameter suggested by Somani et al. in their

implementation for Tag (𝜆 = 0.01) and RockSample (𝜆 = 0.1), available at

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.DownloadDespot , and found an

appropriate value through experimentation for AUVNavigation (𝜆 = 0.1)

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.DownloadDespot

www.manaraa.com

159

different time constraints in different types of environments (highly uncertain vs. less

uncertain, more complex vs. less complex): 𝜏 = {5, 10, 50, 100, 500, 1000} ms for Tag

and RockSample and 𝜏 = {50, 100, 500, 1000, 5000, 10000, 15000, 20000} ms for the

more complex and uncertain AUVNavigation. Shorter planning times also inform us

how well the agent does at the beginning of each planning step, and longer planning

times inform us how well the agent’s planning improves with more time allocated for

planning. Since our DHS solution with LSEM heuristic was designed to speed up

planning in highly uncertain environments, we expected it to produce greater rewards in

less planning time in highly uncertain environments AUVNavigation and Tag. If the

DHS mechanism (and its variants) indeed chooses an appropriate heuristic based on the

agent’s current need, we also expected it to perform well in RockSample by simply

relying on ℎ𝐴𝐸𝑀𝑆2 since ℎ𝐿𝑆𝐸𝑀 is unnecessary.

Since we varied the amount of time allocated for planning in each benchmark, we

ran all experiments on a fixed computer. This machine contained an Intel i5 (Haswell)

3.4GHz Quad Core processor (using one thread per experiment) with 8 GB of memory

(3GB were allocated for planning). Each benchmark and algorithm was implemented in

Java. We ran each time constraint and algorithm pair for 1,000 runs using different

random seeds (with only 100 runs for the more time consuming AUVNavigation) and

report 95% confidence intervals around the average cumulative rewards actually earned

by the agent (Eq. 4.24). We allowed each run to execute for up to 200 chosen actions,

after which we stopped execution since each problem should be solvable in far fewer

steps and runs of longer than 200 steps were not goal directed. To speed up planning, we

employed the state-of-the-art MOMDP (Ong et al., 2010) representation for each

www.manaraa.com

160

benchmark POMDP (c.f., Section 4.2.2), with model parameters based on the POMDPX

configuration files available online at the Approximate POMDP Planning Toolkit Dataset

Repository
21

.

4.6. Results

In this section, we present and discuss the results of our experimental study

described in Section 4.5. First, we evaluate the results in each individual benchmark

problem. Then, we summarize the results across all benchmarks and highlight important

discoveries and conclusions.

4.6.1. AUVNavigation Results

We begin our results analysis by considering the most complex and highly

uncertain environment—AUVNavigation—since this type of environment is exactly what

our DHS solution with LSEM was designed to address. We present the results of each

online POMDP planning algorithm on this benchmark in Table 4.1.

From these results, we make several important observations. First, we observe

that the state-of-the-art heuristic search algorithms AEMS2 and FHHOP indeed suffered

greatly in this highly uncertain environment, unless given large amounts of time for

planning 𝜏. That is, when the agent has less than 10 seconds to plan for each action, the

agent earned very minimal rewards close to 0 due to random, non-goal directed behavior

(i.e., it did not find value in spending cost for moving forward—either towards

information or a goal location—and instead routinely performed random, costless actions

until possibly drifting into a rock). Recall that in AUVNavigation, the agent starts from

an initial unknown location and must first discover where it is to know how to find a

21

 http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.Repository

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.Repository

www.manaraa.com

161

Table 4.1: Results on AUVNavigation Benchmark with 95% Confidence Intervals

AUVNavigation

|𝑆| = 13,536 |𝒳| = 96 |𝒴| = 141 |𝐴| = 6 |𝑍| = 144

Algorithm
𝜏 (ms)

50 100 500 1000 5000 10000 15000 20000

AEMS2
-2.1

± 1.3

-4.4

± 6.6

-4.7

± 6.6

-4.7

± 6.6

-1.5

± 0.7

928.4

± 107.6

927.7

± 107.7

928.4

± 107.6

FHHOP
-5.8

± 6.8

-4.4

± 6.6

-5.1

± 6.6

-2.9

± 1.9

-2.6

± 1.8

468.2

± 94.2

871.8

± 108.1

928.4

± 107.6

LSEM
248.7

± 111.4

308.5

± 119.3

385.8

± 104.9

414.9

± 83.1

427.5

± 109.4

420.4

± 109.5

420.4

± 109.5

420.4

± 109.5

DHS
273.6

± 121.1

353.0

± 117.6

526.0

± 100.8

588.2

± 103.5

501.8

± 104.8

572.0

± 91.9

517.7

± 102.4

927.4

± 107.5

DHS-m
165.3

± 123.1

322.7

± 126.6

445.4

± 106.5

588.2

± 103.5

501.8

± 104.8

572.0

± 91.9

927.4

± 107.5

927.4

± 107.5

SoftMaxDHS
268.8

± 123.6

361.1

± 114.7

545.0

± 103.4

585.1

± 108.1

652.2

± 100.9

652.2

± 100.9

565.3

± 102.6

575.2

± 98.8

ABDESPOT
595.9

± 107.0

478.7

± 108.0

300.8

± 86.5

416.9

± 90.2

1007.0

± 83.0

969.5

± 86.4

878.7

± 106.3

1001.8

± 84.6

ARDESPOT
24.7

± 26.0

48.2

± 29.5

321.9

± 76.1

460.1

± 72.0

922.5

± 96.6

988.3

± 86.7

961.2

± 100.3

965.0

± 95.7

sequence of actions moving the agent to a goal location. Thus, the agent has a high

amount of ESU that needs to be reduced through long sequences of information gathering

actions before it can plan actions ultimately maximizing its cumulative rewards. As

discussed in Section 4.3, this results in the error bounds on cumulative rewards 𝑒(𝑏)

being difficult to reduce until ESU is reduced, causing the lack of goal-directed behavior.

Instead, when using state-of-the-art heuristic search algorithms, the agent had to plan for

a long time in order to find policies that appropriately reduced the agent’s ESU so that it

could also plan a path from its initial location to a goal location and earn large cumulative

rewards.

Next, we compare the performance of our LSEM heuristic alone against the state-

of-the-art heuristic search algorithms. Even though LSEM is only designed to guide

agent planning in Stage 1 (and does not necessarily reduce CRU in Stage 2), we observe

a significant improvement in agent behavior when planning times were most constrained

www.manaraa.com

162

(𝜏 = 50, 100, 500, 1000, 5000 ms) compared to AEMS2 and FHHOP. Instead of

random, non-goal directed behavior, the agent formed and executed plans that not only

reduced ESU, but then also led the agent to a goal location, where it earned the only

possible positive rewards. This result implies that ℎ𝐿𝑆𝐸𝑀 also has some value in Stage 2

of planning in highly uncertain environments. However, the cumulative rewards earned

using LSEM alone were not as high as the state-of-the-art algorithms for the least

constrained planning times (𝜏 ≥ 10000 ms). This imples that although LSEM can

perform somewhat admirably in Stage 2, it cannot completely reduce CRU to the point

that such rewards are ultimately optimized. Hence the need for our DHS solution.

Moving on to our DHS solution variants combining ℎ𝐿𝑆𝐸𝑀 for Stage 1 of planning

(ESU reduction) and ℎ𝐴𝐸𝑀𝑆2 for Stage 2 of planning (CRU reduction), we observe much

better performance when planning time was most constrained (e.g.,

𝜏 = 50, 100, 500, 1000, 5000 ms) compared to AEMS2, FHHOP, and LSEM.

Particularly, we observe that all three variants (DHS, DHS-m, and SoftMaxDHS)

achieved positive rewards at least 200 times faster than the state-of-the art heuristic

search algorithms AEMS2 and FHHOP, implying that our solution (and its variants) can

successfully control planning in highly uncertain environments. That is, our solution

enabled the agent to reduce the necessary types of uncertainty at the right times in order

to create plans leading the agent to reach a goal location and earn the only positive

reward in the benchmark. Success with planning times as small as 50 ms is rather

noteworthy since a successful run requires over 20 actions just to navigate from the initial

starting location to the goal location, not counting actions to resolve ESU, which is quite

deep given the complexity of this benchmark.

www.manaraa.com

163

Furthermore, we observe that DHS always performed better than either AEMS2

or LSEM alone for these constrained planning times (𝜏 < 10000 ms). This implies that

splitting planning into stages, then using situational-awareness to choose appropriate

heuristics for each stage, improves the agent’s ability to efficiently and effectively plan

policies leading to successful behavior than using either heuristic alone.

Additionally, we also observe that the performance of DHS (and its variants)

generally improved as more and more time was allocated, as we desire out of an anytime

algorithm. Moreover, both DHS and DHS-m also reached the same very high cumulative

rewards (over 900) as the state-of-the-art heuristic search online POMDP planning

algorithms AEMS2 and FHHOP, although our solution required a little more time to

reach such high rewards (15,000 ms for DHS-m and 20,000 ms for DHS vs. 10,000 ms

for AEMS2). This is somewhat expected from our theoretical results in Section 4.4.4

(especially the discussion on DHS-m), and in the future we intend to explore additional

ways to further speed up the increase in reward accumulation by agents planning with

DHS and LSEM.

Finally, comparing the performance of our solution against the state-of-the-art

Monte Carlo search online POMDP planning algorithms ABDESPOT and ARDESPOT,

we observe mixed results. First, we observe that our solution and each of its variants

(DHS, DHS-m, SoftMaxDHS) outperformed ARDESPOT for each of the most constrained

planning times (𝜏 = 50, 100, 500, 1000 ms) and the simpler, non-regularized

ABDESPOT for several of the same constraints (𝜏 = 500, 1000). Ultimately, each of

these solutions achieved similar performance for the greatest amounts of planning,

although the ABDESPOT and ARDESPOT approaches reached high levels sooner and

www.manaraa.com

164

Table 4.2: Results on Tag Benchmark with 95% Confidence Intervals
Tag

|𝑆| = 870 |𝒳| = 30 |𝒴| = 29 |𝐴| = 5 |𝑍| = 2

Algorithm
𝜏 (ms)

5 10 50 100 500 1000

AEMS2 -5.78 ± 0.38 -5.70 ± 0.38 -5.44 ± 0.39 -5.73 ± 0.38 -5.50 ± 0.40 -5.49 ± 0.38

FHHOP -8.17 ± 0.42 -8.26 ± 0.42 -6.53 ± 0.38 -6.46 ± 0.38 -5.95 ± 0.37 -5.90 ± 0.38

LSEM -48.85 ± 1.60 -48.49 ± 1.62 -49.88 ± 1.61 -49.56 ± 1.58 -43.55 ± 1.29 -41.59 ± 1.21

DHS -21.56 ± 1.27 -21.68 ± 1.26 -12.08 ± 0.75 -10.25 ± 0.65 -8.84 ± 0.48 -7.03 ± 0.40

DHS-m -6.03 ± 0.41 -6.20 ± 0.41 -5.90 ± 0.37 -5.54 ± 0.38 -5.87 ± 0.38 -6.06 ± 0.38

SoftMaxDHS -9.57 ± 0.60 -9.27 ± 0.58 -6.69 ± 0.40 -5.97 ± 0.40 -6.17 ± 0.37 -6.03 ± 0.38

ABDESPOT -11.65 ± 0.43 -12.27 ± 0.40 -7.22 ± 0.37 -6.51 ± 0.38 -5.77 ± 0.38 -5.92 ± 0.38

achieved slightly greater overall rewards. Given that these Monte Carlo search

algorithms were the best of the previously reported online POMDP planning algorithms

and operate differently than heuristic search, our approach represents a new heuristic

search algorithm that starts to bridge the gap between Monte Carlo search algorithms

and heuristic search algorithms on such a difficult problem.

4.6.2. Tag Results

Next, we analyze the results of our experiments on the Tag benchmark. Recall

that Tag is also a highly uncertain environment, since the agent can only observe the

location of the opponent it seeks when they are in the same location. However, Tag is

also much less complex than AUVNavigation—containing an order of magnitude fewer

states and two orders of magnitude fewer observations. We present the results on this

benchmark in Table 4.2.

From these results, we first observe that the state-of-the-art heuristic search

algorithm AEMS2 performed quite well on this benchmark, achieving both (1) the best

performance for most of the time constraints, and (2) quite consistent performance across

all time constraints, even performing almost as well with only 5 ms of planning time

compared to 1000 ms of planning time. Similarly, the other state-of-the-art heuristic

www.manaraa.com

165

search algorithm, FHHOP, also performed quite well, especially with 𝜏 ≥ 50 ms

planning time. Thus, we confirm our suspicion that although this benchmark is highly

uncertain, it is not complex enough to warrant special solutions to handle ESU and CRU

separately.

However, we still observe that our DHS-m solution variant performed almost as

well as AEMS2, partially due to its bias to rely on ℎ𝐴𝐸𝑀𝑆2 more often than DHS (Eq.

4.22) and partially due to its correct selection of heuristics. Similar in performance to

FHHOP, SoftMaxDHS also performed very well with 𝜏 ≥ 50 ms planning time, in spite

of no bias towards relying often on ℎ𝐴𝐸𝑀𝑆2. Thus, both of these 𝜖-optimal variants still

properly guided planning to performances very close to the state-of-the-art heuristic

search algorithms.

On the other hand, our DHS solution did not perform as well as its 𝜖-optimal

variants DHS-m and SoftMaxDHS (although its still greatly improved its performance

with more planning time, as desired). Looking closer at the results, we note that this is

due to the LSEM heuristic actually having a problem caused by a quirk of this

benchmark. In particular, the agent’s Tag action not only has the ability to earn the agent

a large reward (or incur a large cost), but it also identifies whether or not an opponent is

in the same location. That is, if the agent performs a Tag action, it will either know with

certainty that it shares a location with the opponent (since it receives a large reward and

execution ends), or that the opponent cannot be in the agent’s current location. As such,

this action always reduces the agent’s ESU (where the opponent’s location is the hidden

part of the environment state). Since no other actions reveal as much information about

the environment state, belief states following Tag actions maximize ℎ𝐿𝑆𝐸𝑀, even though

www.manaraa.com

166

they will earn the agent large costs if the opponent is not in the same location as the

agent. As a result, the agent will often want to perform Tag actions when using ℎ𝐿𝑆𝐸𝑀,

and will subsequently accumulate large costs for wrong Tag actions. Other heuristics

such as ℎ𝐴𝐸𝑀𝑆2, on the other hand, will consider the possibility of these large costs and

cause the agent to avoid performing Tag actions until it is likely to be in the same

location as the opponent. This quirk explains why LSEM alone performed so poorly on

Tag, and why DHS also suffered compared to its variants (where DHS-m is biased to

perform ℎ𝐴𝐸𝑀𝑆2 more often and SoftMaxDHS only stochastically chooses the heuristic

considered ideal for the current expected stage of planning). On the other hand, we also

observe that DHS did not perform nearly as poorly as LSEM alone (especially as

planning time increased), implying that it still adjusted which heuristics were used and

when in order to guide planning.

Finally, comparing against the state-of-the-art Monte Carlo search algorithms

ABDESPOT and ARDESPOT, we observe that our DHS variants DHS-m and

SoftMaxDHS outperformed the Monte Carlo search algorithms for the smallest planning

times (𝜏 ≤ 50 ms) and were close in performance for the greater planning times (𝜏 ≥ 100

ms). Thus, our heuristic search solution again performed very favorably in comparison to

the state-of-the-art Monte Carlo algorithms, and not just other heuristic search algorithms

for online POMDP planning.

www.manaraa.com

167

Table 4.3: Results on RockSample Benchmark with 95% Confidence Intervals
RockSample

|𝑆| = 12,545 |𝒳| = 50 |𝒴| = 256 |𝐴| = 13 |𝑍| = 2

Algorithm
𝜏 (ms)

5 10 50 100 500 1000

AEMS2 13.99 ± 0.33 14.24 ± 0.33 18.22 ± 0.39 19.02 ± 0.39 19.48 ± 0.37 20.31 ± 0.41

FHHOP 7.36 ± 0.02 7.41 ± 0.04 18.08 ± 0.38 18.91 ± 0.41 19.32 ± 0.38 20.40 ± 0.40

LSEM 7.35 ± 0.00 7.35 ± 0.00 7.35 ± 0.00 7.35 ± 0.00 7.35 ± 0.00 7.35 ± 0.00

DHS 13.47 ± 0.34 13.84 ± 0.33 18.14 ± 0.39 18.18 ± 0.39 20.16 ± 0.38 20.03 ± 0.42

DHS-m 12.98 ± 0.35 12.71 ± 0.35 18.08 ± 0.39 18.37 ± 0.41 19.19 ± 0.38 20.38 ± 0.40

SoftMaxDHS 13.72 ± 0.33 13.24 ± 0.34 18.18 ± 0.40 18.30 ± 0.39 18.85 ± 0.38 19.99 ± 0.41

ABDESPOT 18.71 ± 0.41 18.83 ± 0.41 19.61 ± 0.43 19.77 ± 0.41 19.79 ± 0.41 20.00 ± 0.41

ARDESPOT 18.72 ± 0.39 18.61 ± 0.41 19.48 ± 0.41 19.32 ± 0.40 19.74 ± 0.41 19.32 ± 0.42

4.6.3. RockSample Results

Finally, we analyze the results of our experiments on the RockSample benchmark.

Recall that unlike AUVNavigation and Tag, this benchmark is not highly uncertain, and

thus does not require two stages for planning (as controlled by our solution). We present

the results on this benchmark in Table 4.3.

From these results, we first observe that as expected, the state-of-the-art heuristic

search algorithms performed quite well. Both AEMS2 and FHHOP increased in

performance with more planning time and achieved some of the highest cumulative

rewards. As in our other benchmarks, we again observe that FHHOP started off a little

lower than AEMS2, but eventually caught up as planning time increased. Thus, state-of-

the-art heuristic search algorithms indeed properly addressed planning in this non-highly

uncertain environment.

However, we also observe quite good performance from our DHS solution and its

variants, in spite of the fact that planning did not require two stages since the

environment was not highly uncertain. That is, not only did performance increase as

planning time increased (as desired), but each of our variants (DHS, DHS-m, and

SoftMaxDHS) generally outperformed state-of-the-art FHHOP for the smallest planning

www.manaraa.com

168

times (𝜏 ≤ 10 ms), and were competitive with both FHHOP and AEMS2 across all

planning times. This is noteworthy since LSEM alone generally performed the worst of

all solutions (since treating ESU reduction separately was not necessary in RockSample).

In other words, each of our DHS solution variants appropriately relied on the ℎ𝐴𝐸𝑀𝑆2

heuristic throughout planning, treating nearly all of planning as if the agent were always

in Stage 2 (since Stage 1 was not necessary). This is exactly the type of behavior we

want to observe in environments that are not highly uncertain, implying that our solution

is not only beneficial in complex, highly uncertain environments such as

AUVNavigation, but is also safe to use in other types of environments as well (without

suffering significantly worse performance than state-of-the-art AEMS2).

Finally, comparing our solution against the state-of-the-art Monte Carlo search

algorithms, we observe that although our solution started with worse performance for the

smallest planning time constraints (𝜏 ≤ 100 ms), it still achieved comparable

performance as planning time increased. Considering also the performance of AEMS2

and FHHOP, we note that on problems such as RockSample, Monte Carlo search

algorithms appear to be the most efficient and effective at planning, as previously

reported (e.g., Silver & Veness, 2010; Somani et al., 2013).

4.6.4. Discussion

Considering our results across all three benchmark problems, we now draw the

following conclusions. First, our situationally-aware DHS algorithm indeed improves

planning in complex, highly uncertain environments, as desired. In the AUVNavigation

benchmark, this algorithm appropriately adapted the agent’s planning based on the

currently identified stage in order to select the most appropriate heuristic (novel ℎ𝐿𝑆𝐸𝑀 or

www.manaraa.com

169

ℎ𝐴𝐸𝑀𝑆2) needed to resolve the most pressing type of uncertainty: ESU or CRU. As a

result, the agent achieved the greatest cumulative rewards when planning was the most

constrained, and therefore also the most difficult, in comparison to the state-of-the-art

heuristic search algorithms. It was also competitive with, and sometimes exceeded, the

state-of-the-art Monte Carlo search algorithms that were the best previously reported

algorithms on this benchmark. Therefore, our solution provides a heuristic search

algorithm for online POMDP planning that bridges the performance gap between this

type of planning algorithm vs. Monte Carlo search algorithms.

Moreover, our algorithm also demonstrated its ability to properly identify the

appropriate heuristic to use when the environment was not highly uncertain, as in the

RockSample benchmark. In RockSample, DHS and its variants appropriately relied on

the ℎ𝐴𝐸𝑀𝑆2 heuristic, which had similarly great overall performance on this benchmark,

and chose not to use the ℎ𝐿𝑆𝐸𝑀 very much, which was not needed nor successful in this

environment that had easy to resolve ESU. Therefore, we also conclude that the

situational-awareness of our DHS algorithm also works in environments where planning

does not need to be split into stages, and is therefore safe to use in more environments

than those that are highly uncertain.

Finally, the two 𝜖-optimal variants of our DHS algorithm—DHS-m and

SoftMax—each also performed quite well in the highly uncertain but less complex Tag

benchmark, achieving cumulative rewards better than state-of-the-art FHHOP and Monte

Carlo search algorithms, as well as close to AEMS2 as the amount of time allotted for

planning increased. This result demonstrates that although situational-awareness and

multiple stages of planning are less necessary in highly uncertain environments when the

www.manaraa.com

170

problem isn’t very complex (i.e., has small state, action, and observation spaces), our

solution again can achieve good performance by relying on the appropriate heuristic at

the appropriate times. However, we also discovered in our Tag experiments that our

LSEM heuristic has a potential flaw: it does not consider the costs of actions in any way,

and thus might try to force ESU reduction at very high costs contrary to the agent’s

ultimate goals. In the future, we intend to explore variants of LSEM to address this

possible weakness. However, as previously described, our DHS-m and SoftMaxDHS

variants were able to overcome this weakness by choosing to use the ℎ𝐴𝐸𝑀𝑆2 heuristic to

guide planning when appropriate.

Of note, in each of our three benchmarks, we observe different results comparing

AEMS2 with FHHOP in contrast to those previously reported by Zhang & Chen (2012).

Namely, Zhang & Chen reported that FHHOP routinely outperformed AEMS2, including

for the times reported in our experimental results. We believe that this is due to a key

difference between our experimental setup and theirs: we use a MOMDP representation

with each algorithm, instead of only with FHHOP, whereas they considered this

representation to be part of their FHHOP solution. Instead, a MOMDP is compatible

with each state-of-the-art heuristic search algorithm, so in fairness to each, we used the

same representation for all algorithms. In turn, this sped up planning for AEMS2, causing

our differences in results.

4.7. Conclusions

In conclusion, in this chapter we studied the problem of online POMDP planning

in highly uncertain environments, demonstrating that difficult levels of environment state

uncertainty can reduce the ability of state-of-the-art heuristic search algorithms (e.g.,

www.manaraa.com

171

AEMS2 (Ross & Chaib-draa, 2007), FHHOP (Zhang & Chen, 2012)) to reduce

cumulative reward uncertainty, leading to suboptimal planning under limited time

constraints. To overcome this problem, we proposed a solution based on splitting

planning in such environments into two stages, each addressing a different type of

uncertainty. We contributed a novel situationally-aware heuristic selection mechanism

designed to identify the agent’s current planning stage based on the most pressing type of

uncertainty in need of reduction, then use an appropriate heuristic to guide planning

based on the current stage. We also contributed a novel heuristic called LSEM that

guides the agent to reduce environment state uncertainty during the first stage of

planning. We analyzed the theoretical properties of our solution and developed two

variants guaranteed to be 𝜖-optimal, which is an important property for anytime online

POMDP planning algorithms.

We conducted an experimental study comparing the performance of state-of-the-

art heuristic search and Monte Carlo search online POMDP planning algorithms against

our solution and its variants in three different commonly used POMDP benchmark

problems. Using a range of time constraints on planning in each benchmark to

understand the performance of planning in different settings, we observed several key

results about our solution. First, DHS and its variants successfully produced better plans

in the most complex and highly uncertain environment when the agent was most time

constrained (finding plans capable of achieving positive rewards over 200 times faster

than AEMS2 and FHHOP). Second, DHS and its variants earned some of the highest

rewards even in an environment that was not highly uncertain, demonstrating both that (i)

our solution appropriately selects heuristics to guide planning based on the agent’s

www.manaraa.com

172

current need, and (ii) that our solution is safe to use in environments that are not highly

uncertain. Finally, the 𝜖-optimal variants of DHS also achieved good performance in the

highly uncertain but least complex environment where multistage planning was not

necessary.

In the future, we intend to continue this research along several directions. First,

we intend to implement our solution in actual real-world deployments of intelligent

agents and multiagent systems within highly uncertain environments to further evaluate

its performance. For example, POMDPs have been used to control information gathering

in domains such as human-agent interactions (e.g., Boutilier, 2002; Doshi & Roy, 2008;

Williams & Young, 2007) and robotics (e.g., Mihaylova et al., 2002; Spaan et al., 2010),

and we suspect our multistage planning could further improve planning in such

applications. Second, we intend to produce an improved version of LSEM that considers

the costs of actions in order to avoid possible problems like we observed in Tag, where

the agent could exchange (unnecessary) high costs for reduced environment state

uncertainty. Third, we want to further study variants of DHS to hopefully produce a

solution that reaches optimal levels of rewards faster to further complement its ability to

find good (albeit suboptimal) rewards quickly. Finally, we want to consider additional

types of heuristic functions within a heuristic selection mechanism like DHS to see if our

general approach of situationally-aware multistage planning might be useful in other

types of complex, challenging environments (and not just highly uncertain

environments).

www.manaraa.com

173

CHAPTER 5 INTELLIGENT INFORMATION SHARING WITH

LOCALIZED, NON-STATIONARY PHENOMENA

In this chapter, we present our research on the Information Sharing Problem (c.f.,

Section 1.3) in the context of large teams where only a small subset of the agents can

directly observe local phenomena within the environment. Previous research has

demonstrated the challenges of converging to consistent, accurate beliefs throughout the

team when observing such localized phenomena. However, sharing is further

complicated in non-stationary environments, where changes in the observed phenomena

over time require the team to collectively revise their beliefs as the phenomena change.

In this chapter, we first analytically and empirically demonstrate the difficulty

inherent in sharing information and revising beliefs over time about localized, non-

stationary phenomena, uncovering the inertia-based Institutional Memory Problem.

Subsequently, we propose two novel solutions for addressing this problem: (1) a change

detection and response algorithm, and (2) a forgetting-based solution. In both solutions,

agents reflect on their own knowledge or the knowledge shared by neighbors, the

deliberatively decide how to incorporate such information to improve their knowledge

updates and information gathering. We test our solutions under several network

structures and sequences of non-stationary phenomena to verify the efficacy of our

approaches and evaluate their robustness in the presence of faulty and/or malicious agents

injecting incorrect information into the team.

Please note that this chapter represents an extended version of a workshop paper

presented at the 6th International Workshop on Emergent Agent Intelligence (WEIN

2014) alongside the AAMAS 2014 conference (Eck & Soh, 2014a) in May 2014.

www.manaraa.com

174

5.1. Introduction

Real-world environments contain complex phenomena that are increasingly

observed by computational devices and systems, often to enhance human knowledge

and/or provide real-time support for some task. For example, sensors networks and robot

teams are employed for area surveillance (e.g., Padhy et al., 2006; Pavon et al., 2007;

Spaan, Veiga, & Lima, 2010), autonomous robots are used to discover victims of

disasters in search and rescue applications (e.g., Calisi et al., 2007), and human

relationships and preferences are tracked in social networking systems (e.g., Yin et al.,

2011).

In many of these environments, the observed phenomena are very localized, such

as detected events (e.g., fires) in a specific area, victims trapped in particular buildings, or

individual user's preferences. Although there might be many sensing units within the

system, only a few sensing units are capable of directly observing such local phenomena,

limiting the ability of the system to gather information en mass. Furthermore, the

phenomena are also often non-stationary and change dynamically over time. Thus,

information gathering by sensing units becomes outdated and must be revised frequently

to adapt with the changing phenomena.

To address these challenging phenomena properties, improve the quality of

gathered information, and accurately maintain up-to-date beliefs about the observed

phenomena, intelligent software and hardware agents can be employed to control sensing

units. Such intelligent agents are capable of exhibiting social behavior by sharing

information with one another, helping overcome the localization problem in real-world

applications. Agents can also provide both goal-directed behavior to accomplish system

www.manaraa.com

175

goals, as well as reactive behavior to adapt system performance in unexpected situations

(Wooldridge, 1999). In this manner, intelligent agents can reason about the sensing

performed by the system in order to optimize or improve the information gathered (e.g.,

Padhy et al., 2006; Spaan, Veiga, & Lima, 2010). Altogether, agents can improve the

robustness, scalability, effectiveness, and efficiency of observational systems.

Prior research has studied both (1) information sharing between cooperative

agents (e.g., Glinton, Scerri, & Sycara, 2009; 2010; 2011; Pryymak, Rogers, & Jennings,

2012), and (2) detecting and adapting to changes in non-stationary information gathered

by individual agents (e.g., Widmer & Kubat, 1996). However, little work has considered

these two components of agent-based sensing in combination. Both are vital to sensing

localized, non-stationary phenomena in real-world environments, but at the same time,

localization and non-stationarity together make both information sharing and change

detection more challenging. Therefore, it is important to study both components of

sensing together to understand their relationship to the two aforementioned phenomena

properties.

In this chapter, we begin to fill this gap in the literature by considering the impact

of both localization and non-stationarity in observed phenomena on information sharing

and change detection within teams of sensing agents. In particular, we start with a known

model for information sharing: large team information sharing (LTIS) (e.g., Glinton,

Scerri, & Sycara, 2009; 2010; 2011; Pryymak, Rogers, & Jennings, 2012), a formalized

model where many agents work together but only a small subset of the agents can

directly observe any particular phenomena. This model was chosen as a starting point

due its ability to handle the localization property and its growing popularity in the agent

www.manaraa.com

176

literature. To this model, we then add non-stationarity and study the effects of these

challenging properties together to develop new solutions for handling both properties

simultaneously.

We contribute (1) a formalization of non-stationary phenomena within the LTIS

model, alongside localization; (2) an analysis of the difficulty of non-stationarity during

belief updates using information shared by the few local agents capable of observing the

phenomena; (3) two distinct solutions for overcoming the challenges of non-stationarity

and localization: (i) cooperative change detection and response in local neighborhoods,

and (ii) individually forgetting outdated information; (4) empirical studies investigating

the impact of localized, non-stationary phenomena on large teams of agents controlling

sensing units, as well as the effect of using our solutions for adapting to such phenomena;

and (5) a discussion of the strengths and weaknesses of our solutions and their

appropriateness in different environments.

5.2. LTIS

5.2.1. LTIS Model

We first present the formalized LTIS model (Glinton, Scerri, & Sycara, 2009;

2010; 2011; Pryymak, Rogers, & Jennings, 2012) that serves as the foundation for our

solutions. In LTIS, a large set of agents 𝐴 (e.g., 𝐴 ≥ 1000) work together as a team to

collect information about some environment phenomena. However, only a small subset

𝑆 ⊂ 𝐴 (with |𝑆| ≪ |𝐴|) of the agents have sensors that can directly observe a

phenomenon. For simplicity, agents represent a phenomenon as a binary fact 𝐹 ∈

{𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}, although the model can be easily extended to a greater number of values

(Pryymak, Rogers, & Jennings, 2012). Each sensor returns binary observations 𝑜𝑏

www.manaraa.com

177

describing the current value of the phenomenon. The sensors are imperfect and only

return correct 𝑜𝑏 with accuracy probability 𝑟. For agents with sensors, these observations

are used to revise the agent's belief about the correct value of 𝐹. However, since the team

has limited sensors that can observe the particular phenomenon, the agents must share

information to revise the other agents' beliefs. Because the team is so large, agents can

only communicate with nearby neighbors. Each neighborhood is relatively very small

(compared to the total number of agents), with average size 𝑑.

 A common set of solution techniques have been adopted for LTIS (Glinton,

Scerri, & Sycara, 2009; 2010; 2011; Pryymak, Rogers, & Jennings, 2012). First, agents

only communicate summarized information representing their current belief about 𝐹,

instead of forwarding each individual observation from the sensors. These summarized

beliefs are called opinions (denoted by 𝑜𝑝, described below). This practice (1) reduces

the amount of potentially costly communication, (2) minimizes the impact of over-

counting information, since each agent could repeatedly receive the same forwarded

observation from multiple neighbors, and (3) hides raw observations which could be

sensitive or include private information (e.g., enemies in the surveilled area, user

purchasing habits) (Glinton, Scerri, & Sycara, 2010).

 Given uncertain facts, beliefs are represented by a probability distribution

describing the likelihood that 𝐹 is either 𝑇𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒. Agents start with an initial

uncertain belief that any value is equally likely, then Bayesian updating incorporates new

information 𝑜 (an observation 𝑜𝑏 from a sensor, or an opinion 𝑜𝑝 from a neighbor):

 𝑏′ =
𝑐𝑝(𝑜)∙𝑏

𝑐𝑝(𝑜)∙𝑏+(1−𝑐𝑝(𝑜))∙(1−𝑏)
 (5.1)

www.manaraa.com

178

where 𝑏 is the probability that 𝐹 is 𝑇𝑟𝑢𝑒 (so (1 − 𝑏) is the probability it is 𝐹𝑎𝑙𝑠𝑒), 𝑏′ is

the updated belief, and 𝑐𝑝(𝑜) is the conditional probability that 𝐹 is 𝑇𝑟𝑢𝑒 given the new

information. Here, 𝑐𝑝 weighs newly received information 𝑜, and its value depends on the

value and source of 𝑜:

 𝑐𝑝(𝑜) = {

𝑟 if 𝑜 = 𝑇𝑟𝑢𝑒 ∧ 𝑜 an observation 𝑜𝑏
1 − 𝑟 if 𝑜 = 𝐹𝑎𝑙𝑠𝑒 ∧ 𝑜 an observation 𝑜𝑏
𝑚𝑖 if 𝑜 = 𝑇𝑟𝑢𝑒 ∧ 𝑜 an opinion 𝑜𝑝
1 − 𝑚𝑖 if 𝑜 = 𝐹𝑎𝑙𝑠𝑒 ∧ 𝑜 an opinion 𝑜𝑝

 (5.2)

For observations 𝑜𝑏, the weight depends on sensor accuracy 𝑟, whereas for

opinions 𝑜𝑝, the weight depends on 𝑚𝑗, the likelihood that 𝑎𝑗 's neighbors share correct

opinions.

Because beliefs are uncertain, agents only share information when they become

confident that 𝐹 is either 𝑇𝑟𝑢𝑒 or not from received information. In particular, a

confidence threshold 𝜎 > 0.5 discretizes beliefs into confident opinions:

 𝑜𝑝 = {
 𝑇𝑟𝑢𝑒 if 𝑏 > 𝜎
 𝐹𝑎𝑙𝑠𝑒 if 𝑏 < 1 − 𝜎
 𝑈𝑛𝑐 else

 (5.3)

where 𝑈𝑛𝑐 denotes an unconfident opinion that is never communicated but noted by the

agent when evaluating its belief. We illustrate this discretization in Figure 5.1 in Section

5.3.

5.2.2. Prior LTIS Research

Prior LTIS research has primarily focused on two aspects: (1) identifying

important emergent behaviors during information sharing within large teams, and (2)

developing distributed algorithms to achieve desired emergent behavior.

Using branching process theory, Glinton, Scerri, & Sycara (2010) developed an

analytical model predicting that different settings of the 𝑐𝑝 information weighting

www.manaraa.com

179

parameter (specifically 𝑚𝑗 for weighting opinions from neighbors) can result in three

phases of emergent behavior: (1) unstable dynamics, where too much weight causes

frequent avalanches of sharing between agents, resulting in oscillating beliefs, (2) stable

dynamics, where too little weight results in infrequent belief updates and few confident

beliefs, and (3) scale invariant dynamics, where the optimal amount of weight permits

enough sharing to propagate beliefs throughout the team without causing oscillation.

Later, they (2011) discovered that LTIS was vulnerable when incorrect information was

received (either from benign error or malicious injection by an attacker) and an agent's

belief was near the confidence threshold 𝜎.

Prior research has also focused on developing distributed algorithms for

controlling information sharing by adapting the weight (i.e., 𝑚𝑗) placed in shared

opinions in order to achieve desirable properties. Glinton, Scerri, & Sycara (2010)

exploited their model to produce an algorithm (DACOR) that controls avalanches within

an agent's local neighborhood to globally achieve scale invariant dynamics. Later,

Pryymak, Rogers, & Jennings (2012) developed an algorithm (AAT) requiring no

additional communication to improve belief convergence.

In this chapter, we contribute to both avenues of research on LTIS. First, we

study the emergent behavior caused by including non-stationarity in the LTIS model,

through which we describe analytically the impact of this property on agent information

sharing. Second, we develop novel distributed solutions for adapting information sharing

and belief updates to handle non-stationarity. We also evaluate these solutions

empirically using different settings of teams likely to occur in real-world applications

(e.g., different network structures connecting agents, and the presence of malicious or

www.manaraa.com

180

faulty agents as previously studied (Glinton, Scerri, & Sycara, 2011)) to demonstrate the

advantages and disadvantages of each approach.

5.3. Non-Stationary Phenomena

As described previously, the LTIS model is useful for addressing the challenging

localization property in observed environmental phenomena because it explicitly

considers the reality that only a small subset of the agents can make direct observations.

In this section, we extend the LTIS model to also include a second important property of

many observed phenomena: non-stationarity.

Recall that non-stationarity is caused by dynamic environments that result in

changes to the phenomena of interest as agents perform observations (e.g., events

occurring in areas of interest, additional buildings collapsing after a disaster trapping new

victims, changing human user preferences). To handle non-stationarity, agents must not

only be capable of determining the initial value of a phenomenon (equivalent to forming

beliefs about stationary phenomena in static environments as previously studied with

LTIS), but agents must also be capable of properly adapting their beliefs over time as a

phenomenon changes values.

5.3.1. Modeling Non-Stationarity in LTIS

To model non-stationary phenomena in LTIS, we extend the existing model by

adding a time component to the relevant factors in order to reflect changes to the

phenomena over time. This approach produces the following changes.

First, we discretize time into different intervals, represented by 𝑡 ∈ ℤ+. One time

interval represents the amount of time required for a sensor to produce an observation and

for an agent to transmit an opinion to one of its neighbors. Second, we redefine a fact

www.manaraa.com

181

from a constant 𝐹 to a time-dependent sequence 𝐹(𝑡) expressing the phenomenon's

changing value at each elapsed time interval. For example, a fact might be (1) periodic

and switch values every 𝛥𝑡 ticks, (2) random and switch values with differing durations,

or (3) simply switch values once. Third, observations 𝑜𝑏 and opinions 𝑜𝑝 are time-

stamped with the time 𝑡 when they were observed or shared. Finally, to reflect changing

fact values over time in the agents' beliefs, probabilistic beliefs are also extended to time-

dependent sequences 𝑏(𝑡). Of note: since an agent can receive one or more opinions

from its neighbors and also an observation from a sensor in the same time interval 𝑡, a

chain of several belief updates 𝑏′ can occur for 𝑏(𝑡) $. Thus, the agent might need to

incorporate multiple updates from different sources in the same time interval.

5.3.2. Analyzing the Effect of Non-Stationarity

Forming consistent, accurate beliefs about non-stationary phenomena is a much

more challenging problem than observing stationary phenomena because of the amount

of information required to correctly revise agents' beliefs after a phenomenon change. To

illustrate (without loss of generality), consider a simple phenomenon 𝐹1(𝑡) that is initially

𝑇𝑟𝑢𝑒, then changes to 𝐹𝑎𝑙𝑠𝑒 at 𝑡 = 1001. Observing this phenomenon results in updates

to an agent's beliefs over time illustrated in Figure 5.1 as (a) a continuous probability 0 ≤

𝑏 ≤ 1, and (b) a discrete opinion 𝑜𝑝 ∈ {𝐹𝑎𝑙𝑠𝑒, 𝑈𝑛𝑐, 𝑇𝑟𝑢𝑒} (Eq. 5.3).

Here, the agent begins with pure uncertainty 𝑏(0) = 0.5 and must update its

belief to 𝑏(𝑡) ≥ 𝜎 (recall 𝜎 > 0.5) to achieve a correct opinion of 𝑇𝑟𝑢𝑒. This requires a

belief change of only 𝛥𝑏1 = 𝜎 − 0.5, denoted by (*) in Figure 5.1.

After the non-stationary phenomenon changes values, the agent must receive a

sequence of new information to revise its beliefs from 𝑏(𝑡) ≥ 𝜎 − 0.5 to a later

www.manaraa.com

182

Figure 5.1: Agent Belief Updates

Note: (*) distance to reach initial True belief, (**) distance to reach later False belief

𝑏(𝑡′) ≤ 1 − 𝜎 < 0.5. This requires a belief change of 𝛥𝑏2 ≥ 2(𝜎 − 0.5), denoted by

(**). Since 2𝛥𝑏1 = 2(𝜎 − 0.5) ≤ 𝛥𝑏2, we find that properly revising beliefs for non-

stationary phenomena requires at least twice as much belief change as observing

stationary phenomena, and subsequently, twice as much observed and shared

information. This requirement holds for any change in a phenomenon value, not just in

the example used here.

Unfortunately, choosing a weight placed in shared information cannot overcome

this problem, as used previously to control the flow of information through the team to

achieve consistent, accurate beliefs (Glinton, Scerri, & Sycara, 2010; Pryymak, Rogers,

& Jennings, 2012). Instead, the above problem arises regardless of the weight selected.

That is, given the belief update rule (Eq. 5.1) and any chosen value for 𝑐𝑝(𝑜), two

updates with opposing information simply cancel each other out. This is the underlying

reason why an agent needs twice as much information to revise its belief (than it takes to

arrive at an initial confident belief), as described in the previous paragraph. This result

implies that controlling information sharing by selecting a weight for new information

(namely 𝑚𝑗 for shared opinions 𝑜𝑝) as studied previously for LTIS does not address the

challenges posed by non-stationarity. Instead, a different type of solution for guiding

agent information sharing and belief updates is necessary. We propose two such

www.manaraa.com

183

solutions in Sections 5.4 and 5.5 that exploit different ways of closing the gap between

(*) and (**) (from Figure 5.1) in order to speed up belief convergence after a change in

the non-stationary phenomenon.

Furthermore, we note that the distances (*) and (**) (in Figure 5.1) also result in

agents being less likely to share opinions from each belief update after the phenomenon

has changed values than they would with stationary phenomenon. Here, the team suffers

from an inertia problem, which we call the:

Institutional Memory Problem: too much information needs to be

received by an agent to cause the agent to also share new opinions,

resulting in the team becoming stuck with outdated beliefs that do not

change even when new information is observed.

Specifically, recall that agents only share information with neighbors when they

cross a confidence threshold 𝑏′ ≥ 𝜎 or 𝑏′ ≤ 1 − 𝜎. Since more updates are required to

reach a threshold after a phenomenon value change, each individual belief update is less

likely to result in sharing a new opinion. Therefore, agents actually share fewer opinions

with one another. Unfortunately, this is opposite of what the agents need in order to

adapt to the non-stationary phenomenon since they actually need more updates to reach a

new accurate belief, causing agents to fail to adapt and either become stuck with (1)

outdated beliefs or (2) uncertainty.

The Institutional Memory Problem should not to be confused with the stable

dynamics emergent behavior discovered by Glinton, Scerri, & Sycara (2010). In their

work studying stationary environments, insufficient information is exchanged due to too

little weight placed on new information, resulting in uncertain beliefs. In our work, an

inability to overcome previous confident beliefs limits information exchange. To

demonstrate that our problem is not caused by the weight chosen for incorporating new

www.manaraa.com

184

Figure 5.2: Impact of Non-Stationarity

information, Figure 5.2 presents the results of an empirical study using a team of agents

observing the aforementioned simple phenomenon 𝐹1(𝑡) (using the Random Network

parameters given in Section 5.6).

Here, we measure agent performance as the average number of agents (out of

|𝐴| = 1000) achieving accurate beliefs over time while the non-stationary phenomenon

changed values. We varied the weight for new information from neighbors and confirm

that than no ideal weight exists for non-stationary phenomena, as opposed to the

existence of an ideal weight for stationary phenomena (Glinton, Scerri, & Sycara, 2010).

Instead, although the team could converge to consistent, accurate beliefs for the initial

value of the non-stationary phenomenon (identical to stationary phenomena), a much

smaller number of agents correctly revised their beliefs over time. Indeed, the majority

of agents was unable to overcome inertia and simply retained the initial phenomenon

value in their beliefs. As expected, this occurred regardless of the weight for shared

information. Since appropriately choosing a weight for new information is thus not a

viable solution for handling non-stationarity (as previously studied for stationarity), we

instead require a new type of solution.

www.manaraa.com

185

Overall, we make the following observations about the relationship between the

two properties. First, localization magnifies the impacts of non-stationarity by limiting

the flow of information into the team by restricting observations about changing

phenomenon values necessary to update beliefs over time. Second, non-stationarity

magnifies the impacts of localization by limiting the flow of information within the team

by restricting shared opinions also necessary to update beliefs over time. Therefore,

these two challenging properties unfortunately work together adversely.

5.4. Change Detection and Response

Similar to prior algorithms for LTIS, our first solution relies on cooperative

agents making simple yet effective local decisions within neighborhoods to achieve

desired emergent behavior (i.e., properly adapting agent beliefs over time to non-

stationary phenomena). Here, we develop an approach for explicitly detecting and

responding to non-stationarity.

Strategy. Our strategy is to convert the problem of handling non-stationarity to

one closer to forming beliefs about (simpler) stationary phenomena. We start with the

insight that if the team were able to detect when a phenomenon changes values, then the

agents could treat a new value independent of the previous value – that is, as a separate

stationary phenomenon and a separate instance of the original stationary LTIS problem.

In which case, each agent would need less information to revise its beliefs after a

phenomenon change, having instead only to change beliefs from pure uncertainty to a

new confident belief (𝛥𝑏1), as opposed to moving from one confident belief to its

opposite (𝛥𝑏2 ≥ 𝛥𝑏1). In turn, this behavior would mitigate the Institutional Memory

www.manaraa.com

186

Problem by reducing inertia and subsequently increase the team's convergence to

consistent, accurate beliefs.

To detect changes to a non-stationary phenomenon, we actually exploit the cause

of the inertia property of the Institutional Memory Problem identified in the previous

section. Specifically, considering how much information is needed to revise an agent's

belief (i.e., 𝛥𝑏2 ≥ 2𝛥𝑏1, illustrated by (**) in Figure 5.1) causing the inertia, we note that

any particular neighbor is very unlikely to share a new opinion that conflicts with the

most recent opinion that it previously shared without an actual change in the

phenomenon. For instance, in our prior example (Figure 5.1), sharing a new 𝐹𝑎𝑙𝑠𝑒

opinion (after previously sharing 𝑇𝑟𝑢𝑒) indicates to an agent's neighbors that it received

much new information reflecting a phenomenon change. In which case, the new opinion

is highly likely to be accurate since the likelihood of receiving such a large chain of

information that is instead incorrect would be small. Therefore, changed opinions by

neighbors provide more information than just new opinions, but also indicators signaling

that the phenomenon indeed likely changed values, which other agents can exploit to

overcome their inertia.

After detecting a phenomenon change by receiving a newly conflicting opinion

from a neighbor, an agent responds as follows (detailed in Algorithm 5.1). First, the

agent receiving a newly conflicting opinion resets its own belief to pure uncertainty

(𝑏(𝑡) = 0.5), starting a new, fresh belief about the phenomenon under observation.

Thus, this agent is now closer to a new correct opinion than any formerly confident belief

about the previous value of the phenomenon, without having had to receive as much

www.manaraa.com

187

Algorithm 5.1: Change Detection and Response (CD & R) Algorithm

information as its neighbor. Next, the receiving agent broadcasts its detection (i.e.,

sendDetectedChangeAlert()) to its other neighbors that are farther away from sensors and

thus less likely to have already detected a change as information propagates, encouraging

them to also reset their beliefs. Afterwards, it updates its belief using the information in

the shared opinion (Eq. 5.1).

This reaction behavior simultaneously (1) puts agents in a position to quickly

revise their beliefs after a detected change by moving away from previously confident

beliefs before a belief update, and (2) spreads the detection of phenomenon changes

locally within the team to speed up convergence to accurately revised beliefs without

requiring all agents to receive a large chain of information to revise their beliefs.

Addressing Concerns. However, we must be careful to avoid incorrectly

detecting phenomenon changes, or else the agents' beliefs could oscillate (similar to

unstable team dynamics (Glinton, Scerri, & Sycara, 2010)). That is, if a neighbor shares

an incorrect new opinion conflicting with past opinions, then a false change would be

detected and agents would unnecessarily reset their beliefs and move away from correctly

confident beliefs.

Our solution mitigates this concern in three targeted ways. First, agents only reset

their beliefs with likelihood 𝜎, reflecting the same uncertainty the sharing neighbor has in

www.manaraa.com

188

its opinion (Eq. 5.3). Second, our solution only locally reacts within two
22

 network hops

from the agent that initially changed opinions, minimizing the impact of false detection

on the entire team. Recall that the team's average connectivity 𝑑 is assumed to be rather

small (relative to the size of the team), so these are very local behaviors. Finally, even if

an agent incorrectly resets its beliefs, it only changes its opinion to 𝑈𝑛𝑐 and does not

fully adopt the neighbor's incorrect information. Thus, the agent's belief is just as close to

the correct belief as it is to the neighbor's shared incorrect belief, and the agent can re-

converge to the correct belief with new information just as easily as it would converge to

the incorrect belief that triggered the reset in the first place.

5.5. Forgetting Outdated Beliefs

Our second solution also relies on agents to exhibit local behaviors to adapt their

beliefs over time to non-stationary phenomena. However, unlike our first solution, it is

even more localized since each agent adapts independently of its neighbors, lessening the

reliance of agents on one another. Specifically, we develop a solution employing belief

decay to enable agents to forget outdated beliefs and independently and quickly adapt to

changes to non-stationary phenomena.

The goals behind this solution design are that it should (1) produce faster

adaptation to non-stationary phenomena since agents do not need to wait for conflicting

opinions from neighbors to begin adaptation, and (2) be more robust in environments

with potentially faulty or malicious agents (Glinton, Scerri, & Sycara, 2011) since it

doesn't rely on neighbors for change detection.

22

 Detection is only propagated to the neighbors of the detecting agent, which is itself a neighbor of the

changed agent

www.manaraa.com

189

Strategy. This solution is based on the natural assumption that if an agent has not

received information for a while, its beliefs are less likely to reflect the current value of

non-stationary phenomena since each phenomenon's value changes over time. Thus, the

agent's beliefs should become less confident the longer time has elapsed since the agent

last received new information and updated its beliefs. Then, the agent would be more

likely to (1) reach a confidence threshold opposing its most recent opinion after a belief

update in order to form a new correct belief, and (2) propagate new opinions throughout

the team, enabling other agents to also correctly revise their beliefs and avoid inertia and

the Institutional Memory Problem.

To appropriately adapt agent uncertainty over time, we propose a solution based

on belief decay, where each agent forgets older beliefs the longer time passes between

belief updates. Belief decay has been previously used to describe the behavior of human

knowledge and memory in the cognitive science literature (e.g., Murdock, 1993), as well

as for related problems in artificial intelligence, such as situational awareness (e.g.,

Hoogendoorn, van Lambalgen, & Treur, 2011) and information foraging with fewer

agents that each directly observe the environment (e.g., Reitter & Lebiere, 2012).

However, while this approach has been used in other domains, this research is the first

application of belief decay to information gathering problems with localized phenomena

such as LTIS, so its benefits are unclear a priori. We expect that such an approach is

especially strategic for LTIS because each agent (1) adjusts its beliefs independent of its

neighbors, reducing the agent's reliance on its neighbors to adapt to changes, and (2) can

control the rate of decay, useful for adapting to various frequencies of change in non-

stationary phenomenon.

www.manaraa.com

190

For this solution, we propose adding the following rule to each belief update when

an agent receives new information before incorporating the new information using Eq.

5.1:

 𝑏′(𝑡) = 0.5 + (𝑏(𝑡) − 0.5)𝜆𝛿 (5.4)

where 𝛿 represents the amount of time elapsed since the agent's last belief update, and

𝜆 ∈ (0,1) is a parameter controlling how quickly the agent's belief decays over time:

smaller 𝜆 causes faster decay, whereas larger 𝜆 causes slower changing beliefs. Thus, by

choosing an appropriate 𝜆, an agent can adjust how quickly it forgets old information and

reacts to phenomenon changes (unlike our first solution).

Using Eq. 5.4, an agent's belief always decays towards pure uncertainty (𝑏 = 0.5),

and the amount of decay is proportional to the amount of time since its last belief update.

Thus, the agent moves towards the best position to form a new belief after a phenomenon

value change, and it requires less evidence of change (avoiding inertia) the longer it has

been since an update when it is more likely that the phenomenon indeed changed values.

Afterwards, performing updates with Eq. 5.1 incorporates new information into the time-

adjusted belief, allowing the agent to potentially cross a confidence threshold so that it

can share a new opinion.

Another way of looking at Eq. 5.4 is time-dependent information weighting. That

is, Eq. 5.4 weights older information (already incorporated in the agent's belief) down

towards uncertainty before incorporating new information (Eq. 5.1), and the amount to

down-weight is proportional to the amount of time since the older information was

received.

www.manaraa.com

191

Addressing Concerns. However, we want to ensure that belief decay does not

cause agents to become uncertain if the phenomenon has not actually changed for a

while, which would lead the team to fail to maintain accurate beliefs.

To mitigate this concern and avoid unnecessary mass uncertainty, we propose

only decaying beliefs when new information is received instead of every tick. Recall that

most agents infrequently receive information: only when new information is available,

meaning only when there is actual evidence that the phenomenon might have changed.

Delaying belief decay until receipt of new information allows the agent to (cautiously)

retain its prior beliefs when it has no evidence causing it to believe the phenomenon has

changed. Decaying every tick (even with a smaller decay rate) would instead constantly

push agents towards uncertainty, even if the phenomenon has not changed values, as

illustrated in Figure 5.3. Thus, agents would spend more time with uncertain beliefs,

making it difficult for agents to maintain confident beliefs, similar to the stable dynamics

problem observed by Glinton, Scerri, & Sycara (2010) where too little weight in new

information causes the team to remain uncertain over time.

Figure 5.3: Example of Performing Belief Decay (a) Only Upon Receipt of

Information vs. (b) Every Tick

Note: Shaded area above 𝝈 line indicates accumulated time with a confident belief,

which is much greater for (a) than (b)

www.manaraa.com

192

5.6. Experimental Setup

To better understand how our solutions address the challenges posed by localized,

non-stationary phenomena in multiagent systems, we conducted an empirical study to

evaluate the performance of our solutions in different scenarios modeling those found in

different real-world applications of multiagent sensing. Our goals were to (1) determine

whether our algorithms improve the ability of the team to converge to consistent, accurate

beliefs about localized, non-stationary phenomena, and (2) evaluate the robustness of our

algorithms in the presence of malicious and/or faulty agents that share incorrect

information. Within each goal, we also consider how the network structure of the team

(dependent on the application and domain) impacts performance.

First, we consider two different types of phenomenon value sequences,

representing different types of phenomena: (1) a periodic sequence that is initially 𝑇𝑟𝑢𝑒,

then alternates for 10 total values of equal length (𝛥𝑡 = 1000), and (2) random

sequences that alternate values 10 times with random lengths (chosen uniformly). The

first type of sequence represents equally challenging phenomena values to observe (since

each are the same duration), whereas the second type represents less regular phenomena

of greater difficulty more likely to be present in real-world applications. In either case,

each sequence has a total length of 10,000 simulation ticks.

Second, we also consider the presence of faulty and/or malicious agents that share

incorrect opinions every time they cross the 𝜎 or 1 − 𝜎 threshold and reach a new

confident opinion. We vary the number of faulty and/or malicious agents in order to

evaluate the robustness of our solutions (which has been demonstrated to be a concern

even for stationary phenomena (Glinton, Scerri, & Sycara, 2011)). We also intentionally

www.manaraa.com

193

choose the agents with the highest connectivity to be faulty and/or malicious, which

represents a worst case scenario since these agents have most influence over their peers.

Finally, we vary the network structure of the team of agents according to different

types of networks present in real-world applications of multiagent sensing, including: (1)

Random networks (RN), where connections between agents are randomly determined,

such as in ad hoc sensor networks, (2) Small world networks (SWN), where agents are

clustered in large, important subgroups, such as surveillance applications, and (3) Scale-

free networks (SFN), where connectivity follows a power-law distribution (i.e., a few

agents are connected to many neighbors, whereas many agents have small connectivity),

such as social networks or the Internet.

To create these networks, we use the Erdos-Renyi (Erdos & Renyi, 1960), Watts-

Strogatz (rewire $p=0.5$) (Watts & Strogatz, 1998), and Barabasi-Albert preferential

attachment (Barabasi & Albert, 1999) models, respectively. For each network, we use

the standard setting from prior studies (e.g., Glinton, Scerri, & Sycara, 2010; Pryymak,

Rogers, & Jennings, 2012): the number of agents |𝐴| = 1000, the number of sensors

|𝑆| = 0.05|𝐴| = 50, sensor accuracy 𝑟 = 0.55, average neighborhood size 𝑑 = 8, and

confidence threshold 𝜎 = 0.8. Unless specified, we default to the optimal weight for

shared opinions given the other parameters: 𝑚𝑗 = 0.63 ∀𝑎𝑗 ∈ 𝐴 (Glinton, Scerri, &

Sycara, 2010).

To evaluate our solutions, we use two measures of agent performance. First, we

consider the average number of phenomena values about which the team collectively

forms correct beliefs, represented by 𝑁800. That is, following tradition (e.g., Glinton,

Scerri, & Sycara, 2010), we consider a team's belief correct if 80% of the agents

www.manaraa.com

194

(0.8|𝐴| = 800) form a correct, confident belief at the same time before the phenomenon

changes values again. This measures how well the team as a whole accomplishes its

goal. Second, we also consider the average number of agents holding each of the three

types of discrete beliefs: correct (𝐶) and incorrect (𝐼) confident beliefs and unconfident

beliefs (𝑈). This measure further illuminates how the individual beliefs held by agents

change over time as they adapt to changing phenomenon values.

With these measures, we compare our two solutions–(1) change detection and

response, and (2) forgetting outdated beliefs–for handling localized, non-stationary

phenomena. As a baseline, we also compare against agents that know a priori the ideal

weight for new information, finding which is the goal of prior algorithms for stationary

phenomena (e.g., DACOR (Glinton, Scerri, & Sycara, 2010) and AAT (Pryymak,

Rogers, & Jennings, 2012)). Thus, our baseline results represent an upper-bound on prior

algorithm performance.

5.7. Results

Performance. We first evaluate the general performance of our two solutions for sharing

information about localized, non-stationary phenomena within multiagent systems. We

present the results of this analysis in Table 5.1, which reports the measures of team

performance (𝑁800, 𝐶, 𝐼, 𝑈) for each of the three network types and two types of

sequences of non-stationary phenomena. Please note that these results represent the best

performance of each algorithm type: using the ideal 𝜆 value for our forgetting-based

solution (found by varying 𝜆 ∈ [0.9,1.0) in 0.01 increments) and the ideal 𝑚𝑗 value for

the baseline and change detection and response solutions (found by varying 𝑚𝑗 ∈

www.manaraa.com

195

Table 5.1: Comparison of Solutions with Different Phenomenon and Networks

with 95% Confidence Intervals

 Algorithm

Periodic Sequence Random Sequence

RN SWN SFN RN SWN SFN

𝑵𝟖𝟎𝟎

Baseline
5.00 ±

0.00

5.00 ±

0.00

5.00 ±

0.00

4.97 ±

0.06
5 ± 0.00

4.99 ±

0.02

Change

Detection

10.00 ±

0.00

10.00 ±

0.00

10.00 ±

0.00

7.62 ±

0.28

7.60 ±

0.27

7.40 ±

0.29

Forgetting
10.00 ±

0.00

10.00 ±

0.00

10.00 ±

0.00

9.38 ±

0.13

9.24 ±

0.15

9.44 ±

0.13

C

Baseline
479.39 ±

0.91

485.62 ±

0.91

492.37 ±

0.92

498.86 ±

0.91

495.67 ±

0.91

496.54 ±

0.91

Change

Detection

537.23 ±

0.88

546.07 ±

0.91

540.20 ±

0.84

564.16 ±

0.87

576.86 ±

0.90

558.25 ±

0.84

Forgetting
731.76 ±

0.62

755.59 ±

0.66

642.86 ±

0.56

737.91 ±

0.61

767.63 ±

0.64

652.62 ±

0.54

𝑰

Baseline
481.03 ±

0.91

487.11 ±

0.91

492.64 ±

0.92

479.61 ±

0.91

476.31 ±

0.91

486.01 ±

0.91

Change

Detection

337.67 ±

0.85

356.23 ±

0.88

314.44 ±

0.82

324.47 ±

0.85

339.74 ±

0.88

309.61 ±

0.83

Forgetting
89.65 ±

0.47

94.66 ±

0.49

97.80 ±

0.50

85.60 ±

0.47

85.20 ±

0.47

87.38 ±

0.48

𝑼

Baseline
39.58 ±

0.12

27.27 ±

0.13

14.98 ±

0.08

21.52 ±

0.09

28.03 ±

0.13

17.45 ±

0.09

Change

Detection

125.10 ±

0.27

97.70 ±

0.27

145.37 ±

0.23

111.37 ±

0.22

83.40 ±

0.22

132.14 ±

0.20

Forgetting
178.59 ±

0.33

149.76 ±

0.36

259.34 ±

0.27

176.49 ±

0.32

147.17 ±

0.35

260.00 ±

0.27

𝒎𝒋
Baseline 0.66 0.62 0.68 0.68 0.63 0.68

Change

Detection
0.67 0.67 0.67 0.67 0.67 0.67

𝝀 Forgetting 0.97 0.97 0.95 0.97 0.97 0.95

[0.5, 1.0) first in 0.05 increments, then in 0.01 increments around the ideal value). These

ideal settings are also provided in Table 5.1.

From Table 5.1, we first observe that in all network and phenomena types, both of

our solutions significantly outperformed the baseline approach in terms of the number of

phenomena values for which the team formed correct beliefs (𝑁800). This is because, due

to the Institutional Memory Problem (c.f., Section 5.3.2-5.3.3), agents using the baseline

approach only quickly converged to the first value of the phenomenon (𝑇𝑟𝑢𝑒), then

www.manaraa.com

196

maintained that belief regardless of new information received. As a result, the teams

using the baseline approach only formed correct beliefs about half of the phenomenon

values (since half were equal to the initial value). On the other hand, both of our solutions

successfully adapted their beliefs over time after the phenomenon changed values,

enabling the teams to achieve many more correct collective beliefs (as evidenced by

higher 𝑁800 values, close to the maximum = 10), as well as superior numbers of

individually correct (𝐶) and incorrect (𝐼) agents. Therefore, both of our solutions are

improvements over the previously successful LTIS approaches when considered in

environments with non-stationary phenomena.

Comparing our two solutions with one another, we observe that for the periodic

sequence–the one with equally lengthy amounts of time for each phenomenon value–both

of our solutions were equally successful in forming correct beliefs as a team (𝑁800) for all

10 phenomenon values. However, for the random sequences that contained several

phenomenon values with shorter durations, the forgetting-based solution significantly

outperformed the change detection and response algorithm. We suspect this is due to the

agents' ability to adapt to changes independently by time-decaying beliefs without having

to wait for a neighbor to signal a change. That is, it appears that the ideal forgetting rate

allowed the agents to move towards uncertainty faster after a phenomenon changed

values, indicated by a greater average number of unconfident agents (𝑈), thereby

overcoming inertia faster. The forgetting-based solution also typically achieved a much

greater number of agents with correct beliefs (𝐶), indicating that not only did the teams

using the forgetting solution hold more correct beliefs collectively as a team (𝑁800), but

also more individual agents were also correct.

www.manaraa.com

197

However, the performance of the forgetting-based solution was highly dependent

on the particular 𝜆 value used. In particular, we observed a sharp decline in performance

when 𝜆 was below its optimal value, quickly falling to 𝑁800 values near 0 (caused by

almost only unconfident agents) with decreases in 𝜆 of only 0.04. Thus, although our

forgetting solution outperformed our change detection and response solution, it requires

more fine-tuning (both 𝜆 and the weight to place in new information 𝑚𝑗, which was

simply set to the theoretical best 0.63 (Glinton, Scerri, & Sycara, 2010) in these

experiments). Therefore, the forgetting solution would require more consideration if

deployed to real-world applications, whereas the change detection and response solution

requires less foresight. In the future, we intend to further investigate predictive models to

determine how to automatically set 𝜆.

Comparing across network types (RN, SWN, and SFN) in Table 5.1, we observe

that the network type did not generally impact the performance of any of the approaches

for either of the phenomenon types. Thus, our solutions behave equally well in a wide

range of settings. Of note: the optimal time decay parameter 𝜆 for our forgetting-based

solution was slightly lower for SFN, so a small additional amount of fine tuning could be

necessary based on network structure.

Robustness against Faulty/Malicious Agents. Next, we compare our solutions'

performance in the presence of malicious and/or faulty agents propagating incorrect

information, making it more difficult for the team to converge to correct beliefs. Figures

5.4-5.5 present the number of phenomenon values to which the teams correctly

converged (𝑁800) for the periodic and random phenomenon sequences, respectively.

www.manaraa.com

198

Figure 5.4: Impact of Malicious/Faulty Agents under Periodic Sequences of

Phenomenon Values

Figure 5.5: Impact of Malicious/Faulty Agents under Random Sequences of

Phenomenon Values

As expected, the change detection and response algorithm is indeed more

susceptible to bad information exchanged by malicious and/or faulty agents.

Unexpectedly, though, the forgetting solution was actually very robust against bad agents

and information. Specifically, correct convergence still occurred for many phenomena

values (𝑁800 > 8) in the RN and SWN networks as the number of bad agents approached

50. This is significant because 50 is also the number of agents with sensors inputting

new information into the system. Therefore, even as the amount of bad information

www.manaraa.com

199

approached the amount of freshly observed information, the forgetting-based solution

maintained high performance. In the future, we intend to explore how robustness is

related to the amount of newly sensed information input by sensors.

In contrast to our earlier results (Table 5.1) with no malicious or faulty agents,

network structure did impact team performance once bad agents were included. In

particular, in the SFN case, team performance quickly declined as the number of

malicious/faulty agents increased. Recall that in our experiments, bad agents were

deliberately chosen to be the most connected agents that exhibit the greatest influence on

the team. In SFN, these agents have greater connectivity than in the RN and SWN,

increasing the influence of such malicious/faulty agents and thus degrading team

performance. In the future, we intend to study how to improve robustness in the presence

of such super-connected agents.

Also unexpectedly, agent performance was not monotonically decreasing as the

number of faulty and/or malicious agents increased, especially for random phenomena.

Instead, it appears that small numbers of agents sharing incorrect information are

actually beneficial to overcoming inertia in the Institutional Memory Problem. That is,

occasionally receiving incorrect information seems to cause agents to fail to reach overly

confident opinions, yielding less confident beliefs and thus less inertia for forming new

beliefs after a phenomenon changes. This lower inertia caused by a few bad agents

enabled the team to converge to team-wide correct beliefs more often for the shorter

duration phenomenon values in the random sequences, especially with the change

detection solution that suffered more than forgetting.

www.manaraa.com

200

5.8. Conclusions

In conclusion, we addressed information sharing in multiagent systems observing

localized, non-stationary phenomena common to many real-world applications of

multiagent systems and emerging computational systems where complex environments

are increasingly under observation. We first analytically predicted the impact of adding

non-stationarity to an existing model for information sharing of localized phenomena

called LTIS. We discovered the Institutional Memory Problem caused by inertia in the

agents' beliefs, then developed two novel distributed solutions: (1) a change detection and

response algorithm for improving information sharing in local neighborhoods, and (2) a

forgetting-based solution for independent adaptation by individual agents. Using an

empirical study considering different types of phenomena value sequences and network

structures, as well as varying numbers of malicious and/or faulty agents, we evaluated the

advantages and disadvantages of both types of solutions. We discovered that our change

detection and response algorithm yielded improved off-the-shelf performance over prior

algorithms for stationary phenomena, whereas our forgetting-based solution achieved

even greater performance and robustness to bad information accidentally or intentionally

injected into the system by bad agents. However, our forgetting-based solution requires

additional parameter tuning (in the 𝜆 belief decay rate) to the specific application.

In the future, we intend to advance our research by (1) developing analytical

models describing agent beliefs under non-stationarity and localization, extending the

prior models of Glinton, Scerri, & Sycara (2010), (2) using these models to develop an

approach to automatically tune the 𝜆 parameter for our forgetting- based solution, and (3)

evaluate our approach in real-world deployments of multiagent information sharing.

www.manaraa.com

201

CHAPTER 6 AD HOC INFORMATION GATHERING

In this chapter, we present additional research on the Information Sharing

Problem, this time focusing on developing a solution for enabling agents to adapt their

usage of different sources of information in an important subproblem: ad hoc information

gathering. Namely, agents operating in complex (e.g., dynamic, uncertain, partially

observable) environments must gather information from various sources to inform their

incomplete knowledge. Two popular types of sources include: (1) directly sensing the

environment using the agent's sensors, and (2) sharing information between networked

agents occupying the same environment. We address agent reasoning for appropriately

selecting between such types of sources to update agent knowledge over time. In

particular, we consider ad hoc environments where agents cannot collaborate in advance

to predetermine joint solutions for when to share vs. when to sense. Instead, we propose

a solution where agents individually learn the benefits of relying on each type of source

to maximize knowledge improvement. We empirically evaluate our learning-based

solution in different environment configurations to demonstrate its advantages over other

strategies. This chapter was accepted for publication as a full paper for the AAMAS

2015 conference (Eck & Soh, 2015) and will be presented in May 2015.

6.1. Introduction

One of the most fundamental responsibilities of intelligent agents is

understanding their complex (e.g., dynamic, uncertain, partially observable)

environments, which guides agent reasoning, actuation, and goal accomplishment. Often,

agents lack complete knowledge of their environment a priori and must update their

www.manaraa.com

202

understanding over time. These updates are informed by incorporating information

gathered whilst operating in the environment. Two popular types of sources of

information include (1) an agent independently sensing its environment, gathering direct

observations as a result of the agent's actions and sensors, and (2) receiving shared

information from other agents operating in the same environment (either cooperatively

for the sake of the system or for individual profit by self-interested agents).

Depending on the application, these two types of sources might have different

benefits (e.g., types of information provided, information quantity and quality) and costs

(e.g., resource and time expenses). Sensing can be performed on demand, gathering

information as soon as the agent needs, and the agent can do so in a timely fashion

without taking away from other agents' activities. Information sharing, on the other hand,

can propagate information through the entire system potentially faster and with less cost

(not waiting for each agent to individually sense the same information). However,

relying on sharing also means waiting for another agent to possess the desired

information, and sharing takes time and resources away from other agent activities that

could instead further the sharing agent's individual goals.

Because of these differences, agents in applications where both sources coexist

face an interesting question: when should I use sensing to update my understanding vs.

when should I request information from other agents and rely on shared information?

Answering this question leads to a challenging tradeoff between using the two types of

information sources that when properly balanced could lead to improved agent behavior

and goal accomplishment (e.g., through lower cumulative cost and higher quality

knowledge).

www.manaraa.com

203

Traditionally, agents in a shared environment would pre-coordinate when they

might be willing and able to share information so that each agent could plan appropriately

to know when to sense vs. when to rely on shared information. However, in many

applications, this pre-coordination might not be possible. Specifically, in ad hoc

environments where pre-coordination is impossible and agents might not know the

behaviors or capabilities of their peers in advance (Stone et al., 2010), agents cannot

determine a priori the value of relying on shared information against the value of sensing

alone. This is especially true in many types of ad hoc environments that are also open

environments, where agents can join and leave the environment over time. Agent

openness is especially problematic to information sharing because the availability of

shared information changes over time and knowledge about the environment disappears

with departing agents (who knew more than newly joining agents). Thus, determining

when to sense vs. when to rely on shared information is especially difficult in ad hoc

environments. In this chapter, we study how agents should balance the sensing vs.

sharing tradeoff in ad hoc environments, henceforth referred to as the ad hoc information

gathering (AHIG) problem.

In order to solve the AHIG, we propose a learning-based solution where agents

individually learn over time how different types of information gathering actions

(independently sensing vs. requesting shared information) improve their knowledge about

the environment. Through learning, agents can find good information gathering

strategies without relying on pre-coordination in ad hoc environments, instead treating

other agents as part of the environment affecting the quality of their information

gathering. Moreover, learning enables each agent to adapt its behavior as it interacts with

www.manaraa.com

204

different agents, which is valuable in open environments where agents join and leave

over time. Thus, through learning, agents can individually adapt their behavior to

maximize their own knowledge improvement by learning the benefits of using different

types of information sources without requiring coordination between agents.

However, because agents are operating in complex environments with incomplete

information, learning is generally a computationally complex problem: learning in

partially observable environments is much harder than learning in fully observable

environments. To simplify the agents' learning process, we show how the agents' general

problem of understanding the current state of the complex environment can be

transformed to a simpler problem of improving agent knowledge over time, in a

transformation we term the Knowledge State MDP exploiting full observability of

current measures of agent knowledge as intermediate states for guiding agent decision

making. As a result, an agent can learn faster how to gather information in the

environment to best refine knowledge. Moreover, this transformation is potentially

useful in more general information gathering problems (beyond the AHIG).

To demonstrate the effectiveness of our transformation and learning-based

solution, we empirically evaluate using different experimental environment

configurations how well agents learn to select between different information sources over

time to improve their knowledge. We discover that our solution outperforms baseline

approaches maximizing either sensed or shared information, and does so by appropriately

selecting between different information sources at different times to best refine agent

knowledge. Furthermore, our results indicate that learning about how to gather

www.manaraa.com

205

information is most beneficial when information is most scarce (and careful information

gathering is most necessary).

6.2. Problem

The AHIG problem occurs whenever a set of agents observe the same

environment and can share information but cannot coordinate in advance to determine

when agents might share or what quality of information they might provide. This

includes real world examples such as (1) intelligent ad hoc sensor networks, where agents

are deployed on wireless sensors that are randomly dropped to monitor an open space, (2)

robotic search and rescue operations, where different organizations might bring their own

robots to explore the same disaster area, and (3) ad hoc traffic information networks,

where intelligent agents on cars communicate with a road infrastructure system as they

navigate through town to report and understand traffic conditions.

6.2.1. AHIG Formulation

We formalize the AHIG problem as follows. A set of agents 𝐴𝑔 = {𝑖} exist in a

shared environment and are connected by a bidirectional communication network.

Because communication costs grow as the network becomes larger, each agent's local

neighborhood 𝑁(𝑖) is relatively small compared to the size of the entire network.

Occasionally, due to openness, some agents will leave the network and others will join.

Thus, we represent the current set of agents at time 𝑡 with 𝐴𝑔𝑡, and likewise for an agent

𝑖’s neighborhood 𝑁𝑡(𝑖).

www.manaraa.com

206

Also in the shared environment are a finite set of phenomena 𝑃 = {𝑗} that

represent objects, entities, or properties of the environment that the agents need to

understand. Each phenomenon 𝑗 can take states from a finite set 𝑃𝑆𝑗 = {𝑝𝑠}, and the

current state of each phenomenon in the dynamic environment changes with probability

𝑐𝑝 each time step. In AHIG, the agents are tasked with always understanding the current

state of each phenomenon, which requires forming correct knowledge about each

phenomenon over time that is refined through gathering information.

To gather information about a particular phenomenon, agents can perform

different actions that use different types of sources for information. In particular, each

agent can (1) sense each phenomenon directly using its sensors, or the agent can (2)

request that its neighbors 𝑁𝑡(𝑖) share their beliefs about a phenomenon. We assume that

the agent's sensors are noisy and imperfect, returning correct observations about the

sensed phenomenon's current state with accuracy 𝑎𝑐𝑐 (and an incorrect observation with

probability 1 − 𝑎𝑐𝑐). Agents can also perform a third type of action: (3) agents can

respond to requests from neighbors with a share action communicating the agent's

uncertain current knowledge about the state of the phenomenon in question.

The goal of each agent is to form accurate knowledge about each phenomenon,

representing good knowledge about the current state of the environment, while

minimizing costs incurred in sensing. Agents are awarded a reward for each time point

during which they have relatively certain knowledge about a phenomenon, whereas

sensing actions and requests for information incur costs to the agent. To encourage self-

interested agents to collaborate, the agents are also awarded a small reward for sharing

information with their neighbors, but only when requested (to avoid unnecessarily

www.manaraa.com

207

consuming the communication resources) and when they are confident about the current

state of the requested phenomenon (to avoid sharing unfruitful information). Otherwise,

agents receive a penalty for sharing information.

To illustrate, consider a search and rescue (S & R) robotics example, where robot

agents 𝐴𝑔𝑡 explore a damaged building after a natural disaster. Here, the phenomena 𝑃

represent different locations where victims might be trapped, and the phenomenon states

𝑃𝑆𝑗 indicate whether victims exist at location 𝑗. A robot 𝑖 can either directly observe the

environment with a noisy camera sensor (that consumes limited energy), or the agent can

communicate with nearby robots 𝑁𝑡(𝑖) using line-of-sight communications. The goal of

each robot is to determine with certainty whether victims exist in each location so that

they can be rescued by human first responders, all-the-while minimizing energy and time

costs.

Of final note: how agents represent their knowledge about the phenomena in the

environment, as well as how they choose actions to refine their knowledge are not

specified in the general AHIG formalization. Different domains, applications, and

solutions might require different approaches to these features (knowledge and decision

making) that are internal to the agent. Indeed, in real-world ad hoc environments,

different agents produced by different developers might even use different approaches to

these features in the same environment. However, agents must have some shared

language that is consistent between agents for communicating shared information. In this

chapter, we choose the knowledge representation and decision making process as part of

our solution, described in Section 6.4.

www.manaraa.com

208

6.2.2. Related Work

The AHIG problem is closely related to several other problems in the multiagent

systems literature. First, the Large Team Information Sharing (LTIS) problem (e.g.,

Glinton et al., 2010; 2011; Pryymak et al., 2012, c.f. Section 5.2) also considers a team of

agents working together to observe at least one phenomenon in the environment, where

agents both sense the current state of the phenomenon individually, as well as share

information through the team's network. Prior research on LTIS has focused primarily on

producing analytic models for the flow of information through the team of agents

(Glinton et al., 2010; 2011), as well as developing distributed solutions for adapting

information flow to achieve accurate, consistent, shared beliefs (Glinton et al., 2010;

Pryymak et al., 2012). However, LTIS differs from the AHIG in several key ways. First,

in LTIS, the team of agents is constant over time (i.e., there is no agent openness), and

agents follow a pre-coordinated strategy of when to share information. Second and most

importantly, in LTIS agents do not choose between sensing, requesting, or sharing

information. Instead, agents with sensors (which might not be all agents in the team)

always receive observations from their sensors at every time point. Additionally, agents

never request information; instead, they automatically share information with their

neighbors whenever (and only when) they reach new highly certain knowledge about a

phenomenon. Thus, LTIS does not consider the tradeoff between relying on different

types of information as in the AHIG.

Another closely related problem studied in the multiagent systems literature is

trust and reputation systems (e.g., Sabater & Sierra, 2002; Sensoy et al., 2013; Teacy et

al., 2006). In such systems, agents can also request and share information with one

www.manaraa.com

209

another to provide additional information to refine agent knowledge over time. The

primary focus in trust and reputation systems is to determine how to incorporate such

shared information: should the sharing agent be highly trusted and should their

information heavily influence the receiving agent's knowledge, or should an agent be

cautious when receiving information from another agent with which it has limited

experience interacting? Like LTIS, this research does not focus on balancing information

from other agents with the agent's own sensing, and thus does not solve the AHIG

problem, but it is complementary in that reasoning about the trustworthiness and

reputation of neighboring agents as information sources could be used to improve an

AHIG agent's decision making process (which we intend to pursue as future work).

Finally, previous research in ad hoc environments has focused on problems such

as how to lead teams of agents without communication (Agmon et al., 2014; Genter et. al,

2013), as well as how to learn to interact with a single Markovian agent (Chakraborty &

Stone, 2013). Since information sharing inherently requires communication, our research

differs from the former (although in our work, agents still cannot pre-coordinate how they

will interact, under the broad definition of ad hoc environments (Stone et. al, 2010)).

Similar to the latter, we also use reinforcement learning to determine how to interact with

other agents, although our approach considers an agent working with multiple other

agents in the environment.

6.3. POMDP Formulation

In order to solve the AHIG and gather the necessary information to understand the

environment, each agent faces a sequential decision making problem of planning a

sequence of actions to perform that refine its incomplete knowledge while minimizing

www.manaraa.com

210

costs incurred for gathering such information. In most partially observable environments

(which includes AHIG since sensing phenomena returns noisy, imperfect observations),

sequential decision making problems are generally solved by some variant of partially

observable Markov decision processes (POMDPs) (Kaelbling et al., 1998). This is

especially true of applications of single agent control of environment monitoring (e.g.,

(Araya-Lopez et al., 2010; Boutilier, 2002; Doshi and Roy, 2008; Eck & Soh, 2013c;

Spaan et al., 2010), similar to our S & R robot example), which we extend in this chapter

to multiagent information gathering in ad hoc environments.

To setup our solution, in the following we next provide a description of both how

the AHIG problem could be cast as a POMDP and the problems with this formulation.

Then, in Section 6.4, we will introduce our Knowledge State MDP transformation of the

POMDP for sequential decision making for information gathering problems.

6.3.1. AHIG as a POMDP

Since the AHIG is a sequential decision making problem in a partially observable

environment (i.e., phenomenon states are partially observable), casting the AHIG as a

POMDP is a natural starting point for a potential solution. In particular, we consider the

POMDP formulation for the AHIG 〈𝑆, 𝐴, 𝑇, 𝑍, 𝑂, 𝑅, 𝛾, 𝑏0〉 summarized in Table 6.1.

In this POMDP, the state space 𝑆 contains variables representing different

information about situations faced by the agent: partially observable 𝑃𝑆𝑗 represent the

different states each phenomenon can take (e.g., the presence of victims in different

locations in our S&R example), and fully observable 𝑆𝑅𝑒𝑞 and 𝑆𝑅𝑒𝑐 represent counts per

phenomenon of how long it has been since the agent last requested that its neighbors

share information or received a neighbor's request, respectively. These count variables

www.manaraa.com

211

Table 6.1: POMDP Formulation of AHIG Problem
POMDP Variable Values AHIG Description

State Variables
𝑺

𝑆𝑅𝑒𝑞 × 𝑆𝑅𝑒𝑐X𝑗∈𝑃𝑃𝑆𝑗

𝑆𝑅𝑒𝑞 = {0, … , 𝑘}|𝑃|

𝑆𝑅𝑒𝑐 = {0, … , 𝑘}|𝑃|

Counts of the number of time steps since the agent last

requested (𝑆𝑅𝑒𝑞) or received a request for information

(𝑆𝑅𝑒𝑐), up to a maximum count 𝑘, and the partially

observable phenomenon states (𝑃𝑆𝑗)

Actions
𝑨

⋃ {𝑆𝑒𝑛𝑠𝑒𝑗 , 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑗 , 𝑆ℎ𝑎𝑟𝑒𝑗}
𝑗∈𝑃

 Actions (1) sensing a particular phenomenon 𝑗, (2)

requesting information from neighbors about

phenomenon 𝑗, and (3) sharing information to

neighbors about phenomenon 𝑗 (for each 𝑗 ∈ 𝑃)

Observations
𝒁

{𝑛𝑢𝑙𝑙} ∪ 𝑃𝑆𝑗 Observations about (1) the phenomenon state of a

particular phenomenon, or (2) receiving no observation

at all.

Transition

Function 𝑻

[0, 1] Likelihood of (1) the request counts changing

(deterministically) and (2) the phenomenon states

changing (stochastically) after each action

Observation

Function 𝑶

[0, 1] Likelihood of the agent receiving observations about

partially observable phenomenon states from its

actions

Reward Function

𝑹

ℝ The rewards received for taking different actions based

on the current state of the environment and the agent’s

knowledge.

Discount Factor 𝜸 (0, 1) A discount factor to use for weighting future, uncertain

rewards

Initial Belief State

𝒃𝟎

𝑈(0, 1) The probability the agent ascribes to each phenomenon

state being the correct initial state of each phenomenon

(a uniform distribution).

are useful for tracking (1) whether the agent recently requested information, so that it

doesn't request too frequently and disrupt other agents, and (2) whether a neighbor

requested information so that the agent knows if it is appropriate to share its own

knowledge. Given this 𝑆, the belief state 𝑏 represents the agent's uncertain knowledge

about each phenomenon's hidden state. This knowledge is refined using information 𝑍

collected from actions 𝐴 using Eq. 2.4. Beliefs start with pure uncertainty (a uniform

distribution over phenomenon states, e.g., a location is equally likely to contain a victim

or not).

Since the environment is dynamic, the transition function 𝑇 encodes the

probability that phenomena change states at each time point (to a new state with

probability 𝑐𝑝, else phenomenon states stay the same with probability 1 − 𝑐𝑝, c.f.,

Section 6.2.1) (e.g., whether a previously safe location collapses and traps new victims,

or trapped victims are rescued). The fully observable states transition deterministically

www.manaraa.com

212

each time step: the count for each phenomenon 𝑗 in 𝑆𝑅𝑒𝑞 is incremented by one (up to 𝑘)

unless the agent requests new information about 𝑗, and the count for each phenomenon 𝑗

in 𝑆𝑅𝑒𝑐 is incremented by one (up to 𝑘) unless the agent shares information (in which case

it reverts to 𝑘 to indicate no request from a neighbor is pending).

The observation function 𝑂, on the other hand, encodes the probability that the

agent receives information about a particular phenomenon depending on the action taken.

For 𝑆𝑒𝑛𝑠𝑒𝑗 actions, 𝑂 encodes that the agent observes the correct state with probability

𝑎𝑐𝑐 (the agents' sensor's accuracy, c.f., Section 6.2.1) and a wrong state with probability

1 − 𝑎𝑐𝑐 (e.g., whether or not the robot's camera correctly identifies a victim in a room).

Other actions return a null observation since they do not directly gather information about

the state of any phenomenon in the environment.

The reward function 𝑅 encodes (1) the rewards for having high certainty beliefs

or sharing information when requested, and (2) the costs for information gathering

actions or penalties for sharing unrequested or uncertain information as described in

Section 6.2.1. Maximizing cumulative rewards leads the agent to highly certain

knowledge (for which it receives a reward) while minimizing costs used to refine its

knowledge.

6.3.2. Problems with POMDP Formulation

However, a few problems exist in this solution formulation. First, the observation

set 𝑍 only considers observations from the 𝑆𝑒𝑛𝑠𝑒𝑗 actions and does not handle shared

information from neighbors, which would occur some delayed amount of time after a

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑗 action. Although 𝑍 could be modified to include additional variables for

received information, this limits the types of shared information neighbors can provide to

www.manaraa.com

213

discrete quantifications of the neighbor's beliefs (e.g., the locations most likely to contain

victims), which loses information about the neighbor's uncertainty (e.g., the probabilities

of victims in each location). Otherwise, the observation space would be continuous (and

thus very difficult to work with) if neighbors shared their full belief states.

Second, even if 𝑍 were extended to include shared information, there is no way

for the observation function in a single agent POMDP to encode a probability that a

neighbor shares a phenomenon state from its own beliefs (in response to a request)

without some pre-coordination and agreement between agents. That is, agents must

understand the likelihoods that a neighbor both (1) shares a particular piece of

information (dependent on the neighbor's beliefs that change over time) and (2) any

information at all (e.g., a robot might be busy and unwilling to share information at the

current time). Without this information, an agent cannot calculate the overall probability

that it receives any particular information from a neighbor at any point in time, necessary

for updating its beliefs with Eq. 2.4 with shared information, nor plan what information it

might receive over time. Therefore, a single agent POMDP formulation of the AHIG will

not directly work in ad hoc environments.

Of note, traditional multiagent variants of POMDPs (e.g., DEC-POMDPs,

Distributed POMDPs, and I-POMDPs (Bernstein et al., 2002; Gmytrasiewicz & Doshi,

2006; Nair et al., 2005)) provide some methods for handling both of the aforementioned

problems; however, these types of POMDPs require pre-coordination so are inappropriate

for ad hoc environments and do not scale well with the number of agents.

To resolve these problems inherent in a POMDP-based AHIG model, we need to

add some method to incorporate shared information (which is inherently multiagent in

www.manaraa.com

214

nature) outside of the (single agent) POMDP framework's belief updates. Then, the agent

should still make decisions based on its current knowledge, but it also needs a way to

plan how its beliefs will change to form an action policy.

6.4. Knowledge State MDP

In this section, we first describe how we propose to incorporate shared

information from other agents, building on the aforementioned POMDP formulation.

Then, we describe a transformation of the POMDP into a MDP that looks at solving the

AHIG from a metareasoning perspective, decoupled from how the agent refines its

knowledge when it receives new information. Finally, we introduce a learning process

for the MDP that enables an agent to learn how to choose actions to take to refine its

knowledge in ad hoc environments without requiring pre-coordination about how and

when other agents will share information.

6.4.1. Incorporating Shared Information

For agent knowledge about phenomenon states, we consider probability

distributions over all possible phenomenon states very similar to belief states described in

Section 6.3.1. We reuse notation with 𝑏𝑡(𝑗, 𝑝𝑠) the probability that the agent believes

phenomenon 𝑗 ∈ 𝑃 is currently 𝑝𝑠 ∈ 𝑃𝑆𝑗. For 𝑆𝑒𝑛𝑠𝑒𝑗 actions, beliefs update from 𝑏 to 𝑏′

after receiving observation 𝑧 about phenomenon 𝑗 using Bayes' rule:

 𝑏′(𝑗, 𝑝𝑠) =
𝑝𝑟𝑜𝑏

𝜂⁄ [(1 − 𝑐𝑝)𝑏(𝑗, 𝑝𝑠) + ∑ (
𝑐𝑝

|𝑃𝑆𝑗|−1
) 𝑏(𝑗, 𝑝𝑠′)𝑝𝑠′∈𝑃𝑆𝑗

𝑝𝑠′≠𝑝𝑠

] (6.1)

where 𝑝𝑟𝑜𝑏 = 𝑎𝑐𝑐 when 𝑧 = 𝑝𝑠, else 𝑝 = 1 − 𝑎𝑐𝑐. This is equivalent to the belief

updates performed with Eq. 2.4 using the POMDP formulation described in Section

2.2.1.

www.manaraa.com

215

With respect to shared information, we assume
23

 that agents share the full

information about their beliefs: the probabilities ascribed to each phenomenon state for

the particular phenomenon for which a neighbor sent a request. Then, the corresponding

belief update for shared information 𝑏𝑆ℎ is:

 𝑏′(𝑗, 𝑝𝑠) =
𝑏(𝑗,𝑝𝑠)∙[𝑤∙𝑏𝑆ℎ𝑎𝑟𝑒𝑑 (𝑗,𝑝𝑠)+(1−𝑤) ∙(1−𝑏𝑆ℎ𝑎𝑟𝑒𝑑 (𝑗,𝑝𝑠))]

∑ 𝑏(𝑗,𝑝𝑠′)∙[𝑤∙𝑏𝑆ℎ𝑎𝑟𝑒𝑑 (𝑗,𝑝𝑠′)+(1−𝑤) ∙(1−𝑏𝑆ℎ𝑎𝑟𝑒𝑑 (𝑗,𝑝𝑠′))]𝑝𝑠′∈𝑃𝑆𝑗

 (6.2)

where constant weight
24

 𝑤 dampens shared information so that uncertain shared beliefs

do not cause agents to become certain too quickly from little gathered information.

Using these two rules, agents can incorporate information from both from (1)

directly observing a phenomenon with its sensors, and (2) its neighbors sharing their

knowledge.

6.4.2. Knowledge State MDP Transformation

At the core of AHIG, the agent's behavior does not necessarily depend on which

particular phenomenon state is currently correct for each phenomenon, but instead the

problem is really about how the agent should choose actions to improve its knowledge

(noting that actions to improve knowledge could be equivalent for each actual

phenomenon state). After all, the agents' goal is to form highly certain knowledge about

each phenomenon using the information available in the environment. For instance, in

our S&R example, a robot will base its information gathering on how certain its

knowledge is about a location (looking to resolve its uncertainty so that it knows where

all victims are as quickly as possible), which is internal to the agent and independent of

23

 Other types of information might instead be shared, based on the domain, which we leave to consider as

future work.
24

 Such weights are common in the information sharing literature (e.g., Glinton et al., 2010; Pryymak et al.,

2012) and could be learned as in trust and reputation systems to further refine our solution, which we intend

to explore in the future. Please see (Glinton et. al, 2010) for a more elaborate discussion of the impact of

weight 𝑤.

www.manaraa.com

216

whether or not an external unknown location actually contains victims. The robot isn't

necessarily responsible for using the refined knowledge for a separate task (that is done

by human first responders), but the goal of the agent in the AHIG is to develop high

quality knowledge that could subsequently be used for other purposes, depending on the

application.

Given this insight, we transform the above POMDP into what we call the

Knowledge State MDP—an alternative formulation of the problem directly enabling an

agent to make decisions of how to gather information based on considering the current

state of its knowledge, as opposed to the state of the environment (including the states of

phenomena under observation). This provides a metareasoning solution enabling the

agent to choose how to gather information based on reflecting about the quality of its

knowledge without worrying about the domain-specific contents of that knowledge. As a

result, the agent's decision making (at a metareasoning level) is decoupled from its

knowledge refinement (at a standard reasoning level), as desired.

The Knowledge State MDP can be mathematically described as a MDP 〈𝑆𝑅𝑒𝑞 ×

𝑆𝑅𝑒𝑐 × 𝐾, 𝐴, 𝑇, 𝑅〉, summarized in Table 6.2. Here, the partially observable part of the

state space is replaced with the different knowledge states 𝐾 of the agent's knowledge

(which are fully observable when reflecting on the agent's knowledge) as it gathers

information to understand its environment. 𝐾 is combined with the 𝑆𝑅𝑒𝑞 and 𝑆𝑅𝑒𝑐 state

variables representing counts of time since requests were sent or received, described in

Section 6.3.1.

Recall that in the AHIG, the primary concern of the agent is to form highly certain

beliefs, so the state of agent knowledge should reflect how much certainty exists in the

www.manaraa.com

217

Table 6.2: Knowledge State MDP Formulation
MDP

Variable

Values AHIG Description

State

Variables
𝑺

𝑆𝑅𝑒𝑞 × 𝑆𝑅𝑒𝑐 × K

𝑆𝑅𝑒𝑞 = {0, … , 𝑘}|𝑃|

𝑆𝑅𝑒𝑐 = {0, … , 𝑘}|𝑃|

𝐾: 𝐻(𝑏, 𝑗) discretized into |𝐾|
bins

Counts of the number of time steps since the agent last

requested information (𝑆𝑅𝑒𝑞) or received a request for

information (𝑆𝑅𝑒𝑐), up to a maximum count 𝑘, and the agents

current certainty (𝐾) in the current state of each phenomenon 𝑗

Actions
𝑨

⋃ {𝑆𝑒𝑛𝑠𝑒𝑗 , 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑗 , 𝑆ℎ𝑎𝑟𝑒𝑗}
𝑗∈𝑃

 Actions (1) sensing a particular phenomenon 𝑗, (2) requesting

information from neighbors about phenomenon 𝑗, and (3)

sharing information to neighbors about phenomenon 𝑗 (for each

𝑗 ∈ 𝑃)

Transition

Function 𝑻

𝑇𝑆𝑅𝑒𝑐,,𝑆𝑅𝑒𝑞
∙ 𝑇𝐾 ∈ [0, 1] Likelihood of state changes, as the product of the likelihood of

request state variable transitions and knowledge state

transitions 𝑇𝐾.

Knowledge

State

Transition

Function 𝑻𝑲

[0, 1] Likelihood of knowledge state changes (i.e., changes in

certainty) after taking each action

Reward

Function 𝑹

ℝ Rewards received for taking different actions based on the

agent’s knowledge.

Discount

Factor 𝜸

(0, 1) A discount factor to use for weighting future, uncertain rewards

agent's knowledge. Then, the agent can take actions that improve its certainty and result

in better knowledge states (closer to full certainty). Given that the knowledge

representation 𝑏 described in Section 6.4.1 is a probability distribution over possible

phenomenon states for each phenomenon, an appropriate measure of certainty in each

phenomenon 𝑗's state (independent of application) is the entropy 𝐻(𝑏, 𝑗) ∈ [0,1] of the

probability distribution representing its knowledge (Araya-Lopez et al., 2010):

 𝐻(𝑏, 𝑗) = 1 +
1

log |𝑃𝑆𝑗|
∑ 𝑏(𝑗, 𝑝𝑠) log 𝑏(𝑗, 𝑝𝑠)𝑝𝑠∈𝑃𝑆𝑗

 (6.3)

To create a set of finite knowledge states 𝐾 using 𝐻(𝑏, 𝑗) so that the MDP is a

discrete state MDP, and thus is much more tractable, we suggest discretizing the certainty

values into equal sized bins so that there exist a desired number of states |𝐾|. Note that a

larger |𝐾| creates a finer grained separation between different knowledge states,

potentially enabling better planning, whereas a smaller |𝐾| make the MDP faster to solve

(and has implications on the learning process described in Section 6.4.3).

www.manaraa.com

218

Given the rewards in the AHIG described in Section 6.2.1, it is important to note

that the same reward encoding works for the Knowledge State MDP as well: knowledge

states identifying high certainty earn a reward, and action-based costs, rewards, and

penalties stay the same.

6.4.3. Learning Knowledge State Dynamics

Now, within the Knowledge State MDP, the key to guiding appropriate action

selection is the dynamics of how knowledge states change based on each action 𝑎 ∈ 𝐴.

That is, how actions lead the agent to improve its certainty over time. This information is

encoded in the knowledge state transition function 𝑇𝐾. Unfortunately, due to a lack of

pre-coordination to determine how and when agents will share information, this function

is undetermined initially. However, whereas this was a problem in our suggested

POMDP-based solution in Section 6.3.1, the transformation into an MDP makes it

feasible to perform model-based reinforcement learning
25

 (MB-RL) (Kaelbling, Littman,

& Moore, 1996) to learn this transition function through interactions with the

environment and other agents (and adjust it over time as agent openness causes the

environment to change), instead of having to rely on pre-coordination.

In general, any MB-RL algorithm should be sufficient to learn the knowledge

state transition function 𝑇𝐾. For our experimental setup in this chapter, we use a learning

approach for the transition function similar to recent variants (Hernandez et al., 2014;

Szita & Szepesvari, 2010) of one of the most popular MB-RL algorithms: R-max

(Brafman & Tennenholtz, 2002). In particular, this algorithm uses frequentist counting

25

Although MB-RL algorithms also exist for POMDPs (e.g., Ross et al., 2007), such algorithms have high

complexity and are not generally applicable in practice for POMDPs of moderate to large state spaces

(which grows quickly with phenomena 𝑃 and their states 𝑃𝑆𝑗 for Section 6.3.1's POMDP).

www.manaraa.com

219

by maintaining a table counting the number of times 𝑛(𝑠𝑡, 𝑎, 𝑠𝑡+1) that the agent observes

a transition from state 𝑠𝑡 to 𝑠𝑡+1 after taking action 𝑎, then the algorithm updates the

transition table to:

 𝑇(𝑠𝑡, 𝑎, 𝑠𝑡+1) =
𝑛(𝑠𝑡,𝑎,𝑠𝑡+1)

𝑛(𝑠𝑡,𝑎)
 (6.4)

whenever the total count of observed transitions for a state-action pair 𝑛(𝑠𝑡, 𝑎) =

∑ 𝑛(𝑠𝑡, 𝑎, 𝑠𝑡+1)𝑠𝑡+1∈𝑆 equals a parameter 𝑚, after which the learning counts for the state-

action pair are reset to 0. A smaller 𝑚 enables faster updates to the transition function,

whereas a larger 𝑚 ensures more precise updates (by relying on more observed

transitions before updating). Of note, smaller |𝐾| are also beneficial here, causing the

same knowledge state to be encountered more frequently, and thus more frequent

learning updates.

Considering the Knowledge State MDP, learning 𝑇𝐾 amounts to learning exactly

how the certainty in the agent's knowledge changes based on (1) each information

gathering action, and (2) how long it has been since the agent requested information

(since this alerts the agent both how timely neighbors respond, as well as whether or not

they respond at all). Understanding such changes to agent knowledge is exactly the

information the agent needs to determine which information gathering actions to perform

in order to reach highly certain knowledge and achieve its primary goal--actions that are

more likely to lead to high certainty knowledge states from the current knowledge state

are actions that most improve the agent's knowledge, as desired.

This learning process only requires feedback from the agent's knowledge updates

(using sensed or shared information) to observe exactly which knowledge state (i.e.,

certainty) transitions occur after taking each action. Thus, the agent can learn over time

www.manaraa.com

220

how its knowledge changes when it senses, as well as when it requests shared

information (including how long such information takes to arrive), without having to

know in advance when or how other agents will choose to share information. Therefore,

this learning process bypasses the problems of other solutions in ad hoc environments

without requiring pre-coordination to understand the behaviors of neighboring agents and

their impact on knowledge refinement. Moreover, the agent also adapts its understanding

of knowledge state transition changes over time, which is important for open

environments where information sharing can become more or less prevalent over time, in

which case a smaller 𝑚 might be useful for more frequent learning and faster adaptation

to the changing environment.

By planning with the reward function 𝑅, the agent plans to reach certainty as fast

as possible (by maximizing rewards for certain knowledge) while also minimizing costs

required for gathering information, making the agent both effective and efficient at its

task. Thus, our Knowledge State MDP coupled with MB-RL is an appropriate solution

for the AHIG.

It is important to note that this Knowledge State MDP transformation is closely

related to a similar metareasoning framework in the literature: the Observer Effect

POMDP (Eck & Soh, 2013c), which combines fully observable knowledge states with

partially observable environment states to guide agents to perform actions that refine

knowledge over time. Our solution here differs in that (1) it learns the transitions in

knowledge over time, as opposed to the domain-specific value of information, and (2)

extends this type of approach to a multiagent setting where learning enables the agent to

reason about the affects of other agents on its own knowledge.

www.manaraa.com

221

6.5. Experimental Setup

To better understand our approach and investigate its performance in different

AHIG settings, we conducted experiments empirically evaluating how well our

Knowledge State MDP and MB-RL process guide agent information gathering using

different information sources, including information sharing, without requiring pre-

coordination. In particular, we considered a range of network configurations that might

reflect different types of environments and applications.

That is, we varied the average neighborhood size 𝑁𝑡(𝑖), where larger

neighborhoods made shared information more prevalent, whereas smaller neighborhoods

represent more communication-constrained environments (e.g., our S&R robot example

where only a few robots might be within line-of-sight of one another). The networks were

randomly generated using an Erdos-Renyi model (Erdos and Renyi, 1960). Since the

environment was ad hoc, agents knew nothing about their neighbors in advance.

Moreover, we made the environment open, where a predetermined percentage (10%) of

the agents left periodically (every 100 time steps) and new agents joined. This agent

openness also reduced the availability of information over time, making information

sharing more or less valuable at different points in time. Within a neighborhood (and

throughout the set of agents), agents differed in their capabilities: different agents had

different sensing accuracies, making them better or worse at quickly gathering good

information from the environment to share with their neighbors upon request. This

follows in the tradition of other ad hoc environments (e.g., Chakraborty & Stone, 2013;

Stone et al., 2010), where agents must work with agents with different capabilities than

themselves.

www.manaraa.com

222

The different opponents in our experiments included: (1) KSMDP+MB-RL: our

Knowledge State MDP solution with MB-RL, using the UCT algorithm (Kocsis &

Szepesvari, 2006) to plan each time step using the learned MDP, (2) KSMDP: our

Knowledge State MDP solution without MB-RL (also using UCT for planning, but only

using the initial, uninformed 𝑇𝐾 function where knowledge states only transition to the

closest states), and two baselines: (3) AlwaysSense: where agents maximized sensing for

information gathering and did not plan for information sharing since pre-coordination

was not possible (which serves as a lower bound on acceptable agent performance), and

(4) RequestThenSense: where agents requested information about each phenomenon

every 𝑘 steps to maximize information sharing, then either sensing the rest of the time to

further inform agent knowledge or sharing if the agent had certain knowledge to help its

neighbors.

We evaluated agent performance using three measures averaged per time step: (1)

average belief certainty across all agents, (2) average proportion of agents with correct,

highly certain knowledge, and (3) average total rewards earned by all agents. Each agent

earned rewards: +10 whenever its 𝑏 was sufficiently certain (i.e., 𝐻(𝑏) ≥ 0.8), -1 for

every 𝑆𝑒𝑛𝑠𝑒𝑗 action, -1 for each 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑗 action (or -5 if 𝑆𝑅𝑒𝑞
𝑗

< 𝑘), and +1 for each

𝑆ℎ𝑎𝑟𝑒𝑗 action (whenever 𝑆𝑅𝑒𝑐
𝑗

< 𝑘, else -5). The other parameters were set: |𝐴𝑔| = 100

(which is too large for multiagent POMDP solutions as a baseline), average 𝑁𝑡(𝑖) ∈

{2,4,6,8,10}, |𝑃| = 1, |𝑃𝑆𝑗| = 3, 𝑐𝑝 = 1%, 𝑎𝑐𝑐~(0.5,0.8), 𝛾 = 0.99, 𝑘 = 6, |𝐾| = 100.

Each configuration repeated 50 times for 1000 time steps.

www.manaraa.com

223

6.6. Results

We begin our results analysis by considering the agent's average belief certainty,

presented in Figure 6.1. From these results, we first observe that our Knowledge State

MDP solution with and without MB-RL (respectively KSMDP+MB-RL, KSMDP)

achieved higher amounts of belief certainty than either of the baselines. This implies that,

instead of trying to maximize either type of information gathering, our KSMDP

formulation enabled agents to appropriately select between information gathering actions

using different sources to best refine their knowledge, as opposed to either (1) requesting

shared information as often as possible (RequestThenSense), or (2) independently relying

only on sensed information (AlwaysSense).

Comparing across average neighborhood sizes, we observe that as neighborhood

size increased and information became more available through sharing (due to each agent

being connected to more potential information sources), the average certainty of the

agents increased. Most notably, certainty increased fastest for our KSMDP solutions,

implying that they became better at controlling information gathering as information

became more readily available (although they also achieved the best performances when

the neighborhoods were smallest and information was most limited).

Further comparing between the two variants of our solution, we note that although

adding MB-RL did not improve belief certainty very much, it did so at a 0.05 statistically

significant level for the smaller average neighborhood sizes (2-6). This was when

information was least available (due to fewer neighbors as sources) and thus more care

was necessary during information gathering. Therefore, adding MB-RL to our Knowledge

State MDP was most beneficial when information gathering was most challenging.

www.manaraa.com

224

Figure 6.1: Average Belief Certainty

Note: in all figures, 95% CIs are too small to display

Figure 6.2: Average Proportion of Correct Agents

www.manaraa.com

225

Next, we consider the average proportion of agents holding correct and highly

certain beliefs, presented in Figure 6.2. Maximizing this performance measure was the

desired emergent behavior of solving the AHIG. From these results, we additionally

observe that not only did our Knowledge State MDP-based solutions (KSMDP+MB-RL

and KSMDP) lead to more certainty in the agents' beliefs, but those beliefs were also

correct. Thus, agents were gathering the right information to understand their

environments over time. Additionally, we again find evidence of the benefits of using

MB-RL to learn how agent knowledge changes based on different information gathering

actions using different sources: the improvement over KSMDP (without MB-RL) for

KSMDP+MB-RL was more pronounced when information was most constrained (i.e., at

lowest neighborhood sizes).

Interestingly, we also observe that for the largest neighborhood size (10)

considered in our experiments, our KSMDP solutions actually achieved very few correct

agents compared to the baselines, which is in sharp contrast to the other neighborhood

sizes. Upon further inspection, what happened is the agents fell victim to institutional

memory: they converged to highly certain beliefs (as indicated in Figure 6.1) because of

the prevalence of shared information (favoring requesting information over continually

sensing the environment). This caused the agents to become stuck with outdated beliefs

that didn't adapt as the phenomenon changed over time since very few agents continued

sensing the phenomenon directly. In the future, we intend to explore how we can adapt

our solution to learn to avoid this problem.

Finally, we consider the average total rewards earned by all agents per time step,

presented in Figure 6.3. We observe that for all but the lowest neighborhood sizes, our

www.manaraa.com

226

Figure 6.3: Average Total Reward

KSMDP approaches--that directly maximized rewards to plan information gathering

actions—earned the highest cumulative rewards due to achieving high certainty while

trying to minimize costs. Of note, for the lowest neighborhood sizes (2-4) when

information was most scarce, the KSMDP approaches were willing to accept more

information gathering cost in order to achieve higher certainty and correctness, as

displayed in Figures 6.1-6.2, ultimately attaining the agents' primary goal.

6.7. Conclusions

In summary, we introduced the ad hoc information gathering (AHIG) problem

occurring when agents must balance relying on different types of information sources

(knowing when to sense vs. when to rely on shared information from other agents) in

order to understand their complex environment without pre-coordinating with one

another. From the tradition of using POMDPs to guide agent decision making, we

proposed a transformation called the Knowledge State MDP that enables agents to

www.manaraa.com

227

control information gathering by reflecting on (fully observable) changes to their

knowledge. To address the inability of agents to pre-coordinate in ad hoc environments,

we added a MB-RL process to the Knowledge State MDP that enables agents to learn

how their knowledge changes when relying on different information sources. This

includes learning how and when neighbors might be willing to share information to

supplement an agent's own sensing of the environment. Using an experimental study, we

investigated the performance of our Knowledge State MDP (with and without MB-RL) in

a range of environment configurations (with varying number of information sources), and

discovered: (1) our solution gathered better information and earned greater rewards than

baseline strategies of trying to maximize the usefulness of either type of information

source (sensing vs. shared information), and (2) adding MB-RL enabled agents to best

guided their behavior when information availability was most limited (and high quality

information gathering was most necessary).

In the future, we intend to: (1) combine our solution with trust and reputation

systems to further learn not only when to rely on different information sources, but how

much weight to place in received information, which could help overcome the

institutional memory problem (where weight 𝑤 could be adapted to avoid agents rapidly

converging to certain beliefs when shared information is prevalent), and (2) study how to

use the Knowledge State MDP to balance information gathering about different

phenomena in the environment to avoid imbalanced knowledge potentially caused by

favoring sources for one phenomenon over the others.

www.manaraa.com

228

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

In this chapter, we conclude by summarizing the research presented in this

dissertation, as well as describing the future research we intend to pursue in continuation

of our overall research vision for reflective, deliberative information gathering. We

summarize our research again in the context of the two problems addressed under this

dissertation in Figure 7.1.

Figure 7.1: Summary of Research

7.1. Summary

In Chapter 1, we introduced our greater research vision of reflective, deliberative

information gathering as a means for improving an agent’s understanding of its

environment in order to improve both the agent’s decision making and subsequent task

and goal accomplishment. We defined two core problems addressed in this dissertation:

the Analysis Problem and the Information Sharing Problem, then outlined our five

www.manaraa.com

229

solutions. Finally, we summarized the key contributions this dissertation (summarized

again in Section 7.3 later in this chapter).

In Chapter 2, we provided a high level overview of prior research from the

literature related to our umbrella concept of reflective, deliberative information gathering

for intelligent agents and multiagent systems. In particular, we summarized past research

introducing the notion of deliberative information gathering, where agents make

intentional decisions to control their sensing to refine their knowledge. We especially

focused on the use of the active sensing POMDP, related to our solutions in Chapters 3,

4, and 6, for deliberative information gathering. Then, we described prior research on

metareasoning and reflection to improve information gathering. Next, we summarized

related research on information sharing in complex environments, especially those with

resource constraints affecting the ability of agents to share information. Finally, we

described how the research presented in this dissertation (and our prior research on

reflective, deliberative information gathering) both fit within and extend the state-of-the-

art in agent-based information gathering.

In Chapter 3, we presented our first solution to the Analysis problem: potential-

based reward shaping for POMDPs. This approach has three key benefits. First, PBRS

for POMDPs embeds additional measures reflecting action benefits and costs (including

with respect to sensing) in reward optimization by agents to produce agent behavior that

best addresses the tradeoff between benefits and costs to improve overall agent behavior.

Second, the approach also generalizes to a solution for improving agent planning in

devices with constrained computational resources (e.g., wireless sensors, robots) by

guiding the agent towards large rewards beyond the myopic planning (i.e., limited

www.manaraa.com

230

number of planning steps) caused by a lack of computational power. Finally, our solution

also represents a novel technique for adding metareasoning to agent reasoning with

POMDPs without increasing the size of the agent’s state space (and thus does not

increase the computational complexity of the reasoning process). Our experimental

results demonstrated that PBRS best improves agent planning in large, complex

environments, whereas state-of-the-art heuristic and Monte Carlo search approaches

performed similarly (or slightly better) in smaller and/or less complex environments.

In Chapter 4, we presented our second solution to the Analysis problem:

situationally-aware online POMDP planning using Difference-based Heuristic Selection

(DHS) and the Long Sequence Entropy Minimization (LSEM) heuristic. This solution

improves information gathering in highly uncertain environments to promote more

efficient and effective planning with limited time constraints. In this solution, the LSEM

heuristic reflects on the expected certainty in agent knowledge in order to guide agent’s

planning so that the agent quickly gathers the necessary information to operate in highly

uncertain environments. DHS, on the other hand, enables the agent to select between

different heuristics measuring different types of information to decide how to plan based

on its most pressing need: reducing knowledge uncertainty vs. maximizing rewards. Our

results demonstrated that DHS with LSEM can find successful policies in highly

uncertain environments two orders of magnitude faster than the best previously reported

heuristic search online POMDP planning algorithms, whereas existing state-of-the-art

heuristic and Monte Carlo search approaches performed similarly well (or slightly better)

in environments with less uncertainty.

www.manaraa.com

231

In Chapter 5, we moved to the Information Sharing Problem and considered

information sharing about non-stationary environment phenomena between large teams

of cooperative agents where only a few agents can directly observe the phenomena of

interest. This limitation on sensing results in a challenging problem caused by

environment non-stationarity: the institutional memory problem where large portions of

the team of agents become stuck with outdated beliefs as the environment changes, no

matter how much additional information enters the team through additional sensing. We

presented two solutions for mitigating this problem: (1) a change detection and response

algorithm where agents work together within local sub-teams to quickly detect changes to

the observed phenomenon, and (2) a forgetting-based algorithm, where agents

independently use belief decay to maintain up-to-date beliefs to avoid problems caused

by faulty agents or malicious information. Our experimental results demonstrated that

both solutions successfully avoid the institutional memory problem and lead to

consistent, accurate beliefs through the team as the environment changes, extending past

solutions (that work well in stationary environments) to guide information sharing in non-

stationary environments.

Finally, in Chapter 6, we studied another subproblem of the Information Sharing

Problem: ad hoc information gathering where agents can share information with peers to

augment their information gathering (in addition to sensing the environment directly), but

agents have no advance knowledge of their peers’ capabilities or willingness to

cooperate. As a result of this lack of a priori knowledge about peers, agents cannot pre-

coordinate their sharing behavior (as we assume for the solutions presented in Chapter 5),

but instead agents must learn to work together over time. We presented a solution called

www.manaraa.com

232

the Knowledge State MDP where agents individually learn the benefits of relying on each

type of source to maximize knowledge improvement. Our experimental results

demonstrated that our approach results in higher belief certainty and more accurate

beliefs than baseline strategies.

7.2. Future Work

In the future, we plan to continue our research on reflective, deliberative

information gathering in several ways. At the end of each of our solution chapters

(Chapters 3-6), we outlined specific ways we intend to advance our research presented in

each chapter. Here, we consider broader opportunities and challenges we intend to

address.

Specifically, we envision two primary avenues for future research: (1) applying

reflective, deliberative information gathering to real-world applications of intelligent

agents and multiagent systems, and (2) extending reflective, deliberative information

gathering as a methodology for developing methods for autonomous data analytics in

“big data” and “data science” solutions.

First, throughout our research on reflective, deliberative information gathering,

we have studied information gathering from a fundamental perspective using theoretical

analyses and empirical studies using popular benchmarks and simulations. We now want

to move towards studying reflective, deliberative information gathering in real-world

applications of intelligent agents and multiagent systems. For example, we are currently

working on developing intelligent agents capable of interacting with human users to

gather information about their preferences, opinions, and knowledge through intelligently

adapting self-administered surveys or computer-assisted interviews (Al Baghal et al.,

www.manaraa.com

233

2013; Ruther et al., 2013; Atkin et al., 2014; Eck et al., 2014; Arunachalam et al., 2015;

Atkin et al., 2015; Eck, Soh, & McCutcheon, 2015; Wettlaufer et al., 2015). Because

respondents might become bored or frustrated with such surveys or interviews, one of the

agent’s tasks is to manage the progress of the survey or interview to predict potential

problems with data collection (e.g., respondents skipping questions, providing false

information to quickly finish the survey or interview, or quitting data collection

altogether), then adapt the questions being asked of the respondent in order to avoid such

problems from occurring or mitigating their impacts on data collection. This applied

research is part of on ongoing grant from the NSF (SES-1228937) in partnership with the

U.S. Census Bureau and Gallup and will result in better information gathering tools for

working with human respondents. We are also interested in applying reflective,

deliberative information gathering to other real-world domains, such as search and rescue

robotics (as used as a motivating example throughout this dissertation), social network

analysis, game playing (e.g., Eck & Soh, 2012a) and computer-supported, collaborative

learning systems (e.g., Khandaker et al., 2011; Eck, Soh, & Brassil, 2013).

Second, reflective, deliberative information gathering is also closely related to

designing autonomous agents capable of performing automated, intelligent “big data”

analytics—enabling reasoning about combining the right data from the right sources at

the right time to enable agents (and humans working with such agents) to make the right

decisions to solve problems in real-time. We intend to further extend our research to

develop agents capable of (1) assisting domain experts in their data analyses, (2)

performing autonomous analyses (both individually and in agent teams) to discover

interesting, novel patterns from data for use by human data consumers, and (3) train

www.manaraa.com

234

novices how to perform data analytics using a wide array of computational methods.

This work also extends our prior design of adaptive knowledge assistants (Eck & Soh,

2012b).

7.3. Contributions

We conclude this dissertation by re-emphasizing its key contributions.

Specifically, we have provided:

1. A better fundamental understanding of agent-based sensing in complex

environments, valuable for a wide range of intelligent agents and

multiagent systems domains. This knowledge can be applied to improve

agent reasoning and actuation in different applications, as well as

improves our overall understanding of general artificial intelligence.

2. A set of solutions to provide reflective, deliberative information gathering

to improve agent-based sensing, including single-agent POMDP solutions

and cooperative agent team-based solutions.

3. New techniques for metareasoning by intelligent agents with broader

impacts beyond sensing control.

4. Implemented simulation environments mimicking real-world scenarios

and applications for studying agent-based sensing.

5. The addition of implementations of many of our solutions to a Java library

for artificial intelligence that can be reused for other AI and agent-based

projects.

www.manaraa.com

235

REFERENCES

Adamczyk, P.D. & Bailey, B.P. 2004. If not now, when? The effects of interruption at

different moments within task execution. In Proceedings of the 2004 ACM

SIGCHI 2004 Conference on Human Factors in Computing Systems (CHI’04).

Vienna, Austria. April 24-29. 271-278.

Agmon, N., Barrett, S., & Stone, P. 2014. Modeling uncertainty in leading ad hoc teams.

In Proceedings of the 13th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS’14), Paris, France, May 5-9, 2014, 397-404.

Al Baghal, T., Phillips, A. L., Ruther, N., Belli, R. F., Eck, A., Stuart, L.C., and Soh, L.-

K. 2013. What are you doing now? Audit trails, activity level responses and error

in the American Time Use Survey. In Proceedings of the 68th Annual Conference

of the American Association for Public Opinion Research, Boston, Massachusetts,

May 16-19, 2013.

An, B., et. al. 2011. Agent-mediated multi-step optimization for resource allocation in

distributed sensor networks. In Proceedings of the 10th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS’11), Turner, Yolum,

Sonenberg and Stone (eds.), Taipei, Taiwan, May 2-6, 2011, 609-616.

Araya-Lopez, M., Buffet, O., Thomas, V., & Charpillet, F. 2010. A POMDP extension

with belief-dependent rewards. In Proceedings of the 24th Annual Conference on

Neural Information Processing Systems (NIPS’10), Vancouver, B.C., Canada.

Dec. 6-9, 2010, 64-72.

Arunachalam, H. Atkin, G., Wettlaufer, D., Eck, A., Soh, L.-K., & Belli, R.F. 2015. I

know what you did next: Predicting respondent’s next activity using machine

learning. In Proceedings of the 70th Annual Conference of the American

Association for Public Opinion Research, Hollywood, Florida, May 14-17, 2015.

Asmuth, J., Littman, M.L., & Zinkov, R. 2008. Potential-based shaping in model-based

reinforcement learning. In Proceedings of the 23rd AAAI Conference on Artificial

Intelligence (AAAI’08), Chicago, IL, July 13-17, 2008, 604-609.

Atkin, G., Arunachalam, H., Eck, A., Soh, L.-K., & Belli, R. 2014. Designing an

intelligent time diary instrument: visualization, dynamic feedback, and error

prevention and mitigation. In Proceedings of the 69th Annual Conference of the

American Association for Public Opinion Research, Anaheim, California, May

15-18, 2014.

Atkin, G., Arunachalam, H., Eck, A., Wettlaufer, D., Soh, L.-K., & Belli, R.F. 2015.

Using machine learning techniques to predict respondent type from a priori

demographic information. In Proceedings of the 70th Annual Conference of the

American Association for Public Opinion Research, Hollywood, Florida, May 14-

17, 2015.

Bajcsy, R. 1988. Active perception. Proceedings of the IEEE, 76(8), 996-1005.

Barabasi, A.-L. & Albert, R. 1999. Emergence of scaling in random networks, Science,

Oct. 15, 1999. 286:509-512.

www.manaraa.com

236

Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S. 2002. The complexity of

decentralized control of Markov decision processes. Mathematics of Operations

Research. 27(4). 819-840.

Bertsekas, D.P. & Castanon, D.A. 1999. Rollout algorithms for stochastic scheduling

problems, Journal of Heuristics, 5:89-108.

Boutilier, C. 2002. A POMDP formulation of preference elicitation problems. In

Proceedings of the Eighteenth National Conference on Artificial Intelligence

(AAAI’02), Edmonton, Alberta, Canada, July 28 – Aug. 1, 2002, 239-246.

Boyd, S.P. & Vandenberghe, L. 2004. Convex optimization. Cambridge University Press:

Cambridge, U.K.

Brafman, R. I. & Tennenholtz. M. 2002. R-max – A general polynomial time algorithm

for near-optimal reinforcement learning. Journal of Machine Learning Research.

3:213-231,

Casper, J. & Murphy, R.R. 2003. Human-robot interactions during the robot-assisted

urban search and rescue response at the World Trade Center. IEEE Transactions

on SMC – Part B: Cybernetics. 33(3):367-385.

Calisi, D., Farinelli, A., Iocchi, L., & Nardi, D. 2007. Multi-objective exploration and

search for autonomous rescue robots, Journal of Field Robotics, 24(8/9):763-777.

Chakraborty, D. & Stone, P. 2013 Cooperating with a Markovian ad hoc teammate. In

Proceedings of the 12th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS’13), Saint Paul, MN, May 6-10, 2013, 1085-1092.

Chalupsky, H. et al. 2001. Electric Elves: Applying agent technology to support human

organizations. In Proceedings of the Thirteenth Conference on Innovative

Applications of Artificial Intelligence (IAAI ’01), Seattle, WA. Aug. 7-9, 2001,

51-58.

Cohn, R. Maxim, M., Durfee, E., & Singh, S. 2010. Selecting operator queries using

expected myopic gain. In Proceedings of the 2010 IEEE/WIC/ACM International

Conference on Intelligent Agent Technology (IAT'10), Toronto, Canada, Aug. 31-

Sept. 3, 2010.

Cohn, R., Durfee, E., & Singh, S. 2011. Comparing action-query strategies in semi-

autonomous agents. In Proceedings of the 25th AAAI Conference on Artificial

Intelligence (AAAI’11), San Francisco, CA, Aug. 7-11, 2011.

Conley, K. and Carpenter, J. 2007. Towel: towards an intelligent to-do list. In

Proceedings of the AAAI’07 Spring Symposium on Interaction Challenges for

Intelligent Assistants.

Cox, M.T. & Raja, A. 2011. Metareasoning: an introduction. In M. Cox & A. Raja

(Eds.), Metareasoning: Thinking about Thinking, MIT Press, 3-14.

Devlin, S. & Kudenko, D. 2011. Theoretical considerations of potential-based reward

shaping for multi-agent systems. In Proceedings of the 10th International

Conference on Autonomous Agents and Multiagent Ssytems (AAMAS’11), Turner,

Yolum, Sonenberg and Stone (eds.), Taipei, Taiwan, May 2-6, 2011, 225-232.

www.manaraa.com

237

Devlin, S. & Kudenko, D. 2012. Dynamic potential-based reward shaping. In

Proceedings of the 11th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS’12), Conitzer, Winikoff, Padgham, and van der

Hoek (eds.), Valencia, Spain, June 6-8, 2012.

D’Mello, S. & Graesser, A. 2012. AutoTutor and affective AutoTutor: Learning by

talking with cognitively and emotionally intelligent computers that talk back.

ACM Transactions on Interactive Intelligent Systems 2(4), Article 23 (December

2012), 39 pages.

Doshi, F. and Roy, N. 2008. The permutable POMDP: fast solutions to POMDPs for

preference elicitation. In Proceedings of the Seventh International Conference on

Autonomous Agents and Multiagent Systems (AAMAS’08), Estoril, Portugal, May

12-16, 2008, 493-500.

Eck, A. 2010. Agent sensing with stateful resources. Masters Thesis. University of

Nebraska-Lincoln.

Eck, A. & Soh, L.-K. 2011. Agent sensing with stateful resources (Extended Abstract). In

Proceedings of the 10th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS’11), Tumer, Yolum, Sonenberg and Stone (eds.),

Taipei, Taiwan, May, 2-6, 2011, 1283-1284.

Eck, A. & Soh, L.-K. 2012a. Active sensing for opponent modeling in poker. In

Proceedings of the 2012 Computer Poker Symposium, Toronto, Ontario, Canada,

July 23, 2012.

Eck, A. & Soh, L.-K. 2012b. Adaptive knowledge assistants. In Proceedings of the First

International Workshop on Human-Agent Interaction Design and Models

(HAIDM'12), Valencia, Spain, June 4, 2012. (co-located with AAMAS’12)

Eck, A. & Soh, L.-K. 2012c. Evaluating POMDP rewards for active perception

(Extended Abstract). In Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS’12), Conitzer, Winikoff,

Padgham, and van der Hoek (eds.), Valencia, Spain, June 6-8, 2012.

Eck, A. & Soh, L.-K. 2012d. Investigating reward functions for active sensing POMDPs.

Unpublished.

Eck, A. & Soh, L.-K. 2013a. Dynamic facts within large team information sharing

(Extended Abstract). In Proceedings of the 12th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS’13), Ito, Jonker, Gini, and

Shehory (eds.), Saint Paul, Minnesota, May 8-10, 2013.

Eck, A. & Soh, L.-K. 2013b. MineralMiner: An active sensing simulation environment.

Multiagent and Grid Systems, 9:197-226.

Eck, A. & Soh, L.-K. 2013c. Observer effect from stateful resources in agent sensing,

Autonomous Agents and Multiagent Systems, 26(2):202-244.

Eck, A. & Soh, L.-K. 2014a. Intelligent information sharing for localized, non-stationary

phenomena. In Proceedings of the 6th International Workshop on Emergent

www.manaraa.com

238

Intelligence in Networked Agents (WEIN'14), Paris, France, May 5, 2014. (co-

located with AAMAS’14)

Eck, A. & Soh, L.-K. 2014b. Online heuristic planning for highly uncertain domains. In

Proceedings of the 13th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS’14), Lomuscio, Scerri, Bazzan, and Huhns (eds.),

Paris, France, May 5-9, 2014, 741-748.

Eck, A. & Soh, L.-K. 2015. To ask, sense, or share: Ad hoc information gathering. In

Proceedings of the 14th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS’15), Bordini, Elkind, Weiss, Yolum (eds.), Istanbul,

Turkey, May 4-8, 2015.

Eck, A., Soh, L.-K., & Brassil, C. 2013. Supporting active wiki-based collaboration. In

Proceedings of the 10th International Conference on Computer Supported

Collaborative Learning (CSCL’13), Madison, Wisconsin, June 15-19, 2013.

Eck, A., Soh, L.-K., Devlin, S., & Kudenko, D. 2013. Potential-based reward shaping for

POMDPs (Extended Abstract). In Proceedings of the 12th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS’13), Ito,

Jonker, Gini, and Shehory (eds.), Saint Paul, Minnesota, May 8-10, 2013.

Eck, A., Soh, L.-K., Devlin, S., & Kudenko, D. 2015. Potential-based reward shaping for

finite horizon online POMDP planning. Autonomous Agents and Multiagent

Systems. Available online first at http://link.springer.com/article/10.1007/s10458-

015-9292-6

Eck, A., Soh, L.-K., & McCutcheon, A.L. 2015. Predicting breakoff using sequential

machine learning methods. In Proceedings of the 70th Annual Conference of the

American Association for Public Opinion Research, Hollywood, Florida, May 14-

17, 2015.

Eck, A., Stuart, L., Atkin, G., Soh, L.-K., McCutcheon, A., & Belli, R. 2014. Making

sense of paradata: Challenges faced and lessons learned. In Proceedings of the

69th Annual Conference of the American Association for Public Opinion

Research, Anaheim, California, May 15-18, 2014.

Erdos, P. & Renyi, A. 1960. On the evolution of random graphs. Publication of the

Mathematical Institute of the Hungarian Academy of Sciences, 17-61.

Floreano, D. & Mondada, F. 1994. Active perception, navigation, homing, and grasping:

An autonomous perspective. In Proceedings of the Perception to Action

Conference, 122-133.

Genter, K., Agmon, N., & Stone. P. 2013. Ad hoc teamwork for leading a flock. In

Proceedings of the 12th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS’13), Saint Paul, MN, May 6-10, 2013, 531-538.

Glinton, R.T., Scerri, P., & Sycara, K. 2009. Towards the understanding of information

dynamics in large scale networked systems. In Proceedings of the 12th

International Conference on Information Fusion (FUSION’09), Seattle, WA, July

6-9, 2009.

http://link.springer.com/article/10.1007/s10458-015-9292-6
http://link.springer.com/article/10.1007/s10458-015-9292-6

www.manaraa.com

239

Glinton, R., Scerri, P., & Sycara, K. 2010. Exploiting scale invariant dynamics for

efficient information propagation in large teams. In Proceedings of the 9th

International Conference on Autonomous Agents and Multiagent Systems

(AAMAS’10), van der Hoek, Kaminka, Lesperance, Luck, and Sen (eds.), Toronto,

Canada, May, 10-14, 2010, 21-28.

Glinton, R., Scerri, P., & Sycara, K. 2011. An investigation of the vulnerabilities of scale

invariant dynamics in large teams. In Proceedings of the 10th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS’11), Turner,

Yolum, Sonenberg and Stone (eds.), Taipei, Taiwan, May 2-6, 2011, 677-684.

Gmytrasiewicz, P.J. & Doshi, P. 2005. A framework for sequential planning in multi-

agent settings. Journal of Artificial Intelligence Research, 24:49-79.

Grass, J. & Zilberstein, S. 1997. Value-driven information gathering. In Proceedings of

the AAAI’97 Workshop on Building Resource-Bounded Reasoning Systems.

Grass, J. & Zilberstein, S. 2000. A value-driven system for autonomous information

gathering. Journal of Intelligent Information Systems, 14:5-27.

Guo, A. 2003. Decision-theoretic active sensing for autonomous agents. In Proceedings

of the 2nd International Conference on Autonomous Agents and Multiagent

Systems (AAMAS’03), Melbourne, Australia, July 14-18, 2003, 1002-1003.

Hauskrecht, M. 2000. Value-function approximations for partially observable Markov

decision proceses, Journal of Artificial Intelligence Research, 13:33-94.

Hernandez-Leal, P., de Cote, E.M., & Sucar, L.E. 2014. Exploration strategies to detect

strategy switches. In Proceedings of the 14th International Workshop on Adaptive

and Learning Agents (ALA’2014), Paris, France, May 5-6, 2014.

Hoey, J., et. al. 2007. Assisting persons with dementia during handwashing using a

partially observable Markov decision process. In Proceedings of the 5th

International Conference on Computer Vision Systems (ICVS’07), Bielefeld,

Germany, March 21-24, 2007.

Hoogendoorn, M., van Lambalgen, R. M., & Treur, J. 2011. Modeling situational

awareness in human-like agents using mental models. In Proceedings of the

Twenty-second International Joint Conference on Artificial Intelligence

(IJCAI’11), Barcelona, Spain, July 16-22, 2011, 1697-1704.

Kaelbling, L.P., Littman, M.L., & Cassandra, A.R. 1998. Planning and acting in partially

observable stochastic domains. Artificial Intelligence. 101:99-134.

Kaelbling, L.P., Littman, M.L., & Moore, W. 1996. Reinforcement learning: A survey.

Journal of Artificial Intelligence Research, 4:237-285.

Khandaker, N., Soh, L.-K., Miller, L. D., Eck, A., & Jiang, H. 2011. Lessons learned

from comprehensive deployments of multiagent CSCL applications I-MINDS and

ClassroomWiki. IEEE Transactions on Learning Technologies, 4(1):47-58.

Klein, J., Moon, Y., & Picard, R.W. 2002. This computer responds to user frustration:

theory, design, and results. Interacting with Computers. 14:119-140.

www.manaraa.com

240

Kocsis, L. & Szepesvari, C. 2006. Bandit based Monte-Carlo planning. In Proceedings of

the 17th European Conference on Machine Learning (ECML’06), Berlin,

Germany, Sept. 18-22, 2006, 282-293.

Krause, A., et. al. 2008. Robust submodular observation selection. Journal of Machine

Learning Research, 9:2761-2801.

Krause, A. & Guestrin, C. 2005. Optimal nonmyopic value of information in graphical

models – efficient algorithms and theoretical limits. In Proceedings of tbe

Nineteenth International Joint Conference on Artificial Intelligence (IJCAI’05),

Edinburgh, Scotland, July 31-Aug. 5, 2005, 1339-1345.

Krause, A. & Guestrin, C. 2007. Near-optimal observation selection using submodular

functions. In Proceedings of the Twenty-Second Conference on Artificial

Intelligence (AAAI’07), Vancouver, Canada, July 22-26, 2007.

Krause, A. & Guestrin, C. 2009. Optimizing sensing: From water to the web. IEEE

Computer, 42(8):38-45.

Kurniawati, H., Hsu, D., & Lee, W.S. 2008. SARSOP: Efficient point-based POMDP

planning by approximating optimally reachable belief spaces. In Proceedings of

the 2008 Robotics: Science and Systems Conference (RSS ’08).

Landeldt, B., Sookavantana, P., & Seneviratne, A. 2000. The case for a hybrid

passive/active network monitoring scheme in the wireless internet. In Proceedings

of the 8th IEEE Conference on Networking (ICON’00), Singapore, Sept. 5-8,

2000, 139-143.

Lesser, V., et al. 2000. BIG: An agent for resource-bounded information gathering and

decision making. Artificial Intelligence, 118:197-244.

Mark, G., Gudith, D., & Klocke, U. 2008. The cost of interrupted work: more speed and

stress. In Proceedings of the 2008 ACM SIGCHI Conference on Human Factors

in Computing Systems (CHI’08), Florance, Italy, Apr. 5-10, 2008, 107-110.

Mihaylova, L. et al. 2002. Active sensing for robotics – a survey. In Proceedings of the

5th International Conference on Numerical Methods and Applications

(NM&A’02), Borovets, Bulgaria, Aug. 20-24, 2002.

Murdock, B.B. 1993. TODAM2: A model for the storage and retrieval of item,

associative, and serial-order information. Psychological Review, 100(2):183-203.

Myers, K.L. et al., 2007. An intelligent personal assistant for task and time management.

AI Magazine. 28(2):47-61.

Nair, R., Varakantham, P., Tambe, M., & Yokoo, M. 2005. Networked distributed

POMDPs: A synthesis of distributed constraint optimization and POMDPs. In

Proceedings of the 20th National Conference on Artificial Intelligence (AAAI’05),

Pittsburgh, PA, July 9-13, 2005, 133-139.

Ng, A.Y., Harada, D., & Russell, S. 1999. Policy invariance under reward

transformations: Theory and application to reward shaping, In Proceedings of the

16th International Conference on Machine Learning (ICML’99), Bled, Slovenia,

June 27-30, 1999, 278-287.

www.manaraa.com

241

Ong, S.C.W., Png, S.W., Hsu, D., & Lee, W.S. 2010. Planning under uncertainty for

robotic tasks with mixed observability. International Journal of Robotics

Research, 29(8):1053-1068.

Padhy, P., Dash, R.K., Martinez, K., & Jennings, N.R. 2006. A utility-based sensing and

communication model for a glacial sensor network. In Proc AAMAS’06.

Hakodate, Japan, May 8-12, 1353-1360.

Pavon, J., et al. 2007. Development of intelligent multisensory surveillance systems with

agents, Robotics and Autonomous Systems, 55:892-903.

Pineau, J., Gordon, G., & Thrun, S. 2003. Point-based value iteration: An anytime

algorithm for POMDPs. In Proceedings of the 18th International Joint

Conference on Artificial Intelligence (IJCAI'03), Acapulco, Mexico, Aug. 9-15,

2003, 1025-1032.

Pryymak, O., Rogers, A., & Jennings, N.R. 2012. Efficient opinion sharing in large

decentralized teams. In Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS’12), Conitzer, Winikoff,

Padgham, and van der Hoek (eds.), Valencia, Spain, June 6-8, 2012

Raja, A. & Lesser, V. 2007. A framework for meta-level control in multi-agent systems.

Autonomous Agents and Multiagent Systems, 15:147–196.

Rao, A. and Georgeff, M.P. 1995. BDI agents: From theory to practice. In Proceedings of

the First International Conference on Multiagent Systems (ICMAS’95), San

Francisco, California, June 12-14, 1995, 312-319.

Reitter, D. & Lebiere, C. 2012. Social cognition: memory decay and adaptive information

filtering for robust information maintenance. In Proceedings of the Twenty-Sixth

Conference on Artificial Intelligence (AAAI’12), Toronto, Canada, July 22-26,

2012, 242-248.

Ross, S. & Chaib-draa, B. 2007. AEMS: An anytime online search algorithm for

approximate policy refinement in large POMDPs. In Proceedings of the 20th

International Joint Conference on Artificial Intelligence (IJCAI’07), Hyderabad,

India, Jan. 6-12, 2007, 2592-2598.

Ross, S., Chaib-draa, B., & Pineau, J. 2007. Bayes-adaptive POMDPs. In Proceedings of

the 21st Annual Conference on Neural Information Processing Systems

(NIPS’07), Vancouver, B.C., Canada, Dec. 3-6, 2007.

Ross, S., Pineau, J., & Chaib-draa, B. 2008. Theoretical analysis of heuristic search

methods for online POMDPs. In Proceedings of the Twenty-Second Annual

Conference on Neural Information Processing Systems (NIPS’08), Vancouver,

B.C., Canada, Dec. 8-11, 2008, 1233-1240.

Ross, S., Pineau, J., Paquet, S., & Chaib-draa, B. 2008. Online planning algorithms for

POMDPs. Journal of Artificial Intelligence Research. 32:663-704.

Russell, S. 1995. Rationality and intelligence. In Proceedings of the 1995 International

Joint Conference on Artificial Intelligence (IJCAI'95), Montreal, Quebec, Canada.

950-957.

www.manaraa.com

242

Ruther, N., Al Baghal, T., Eck, A., Stuart, L.C., Phillips, A. L., Belli, R. F., and Soh, L.-

K. 2013. Examining the relationship between error and behavior in the American

Time Use Survey using audit trail paradata. In Proceedings of the 68th Annual

Conference of the American Association for Public Opinion Research, Boston,

Massachusetts, May 16-19, 2013.

Sabater, J. & Sierra, C. 2002. Reputation and social network analysis in multi-agent

systems. In Proceedings of the 1st International Conference on Autonomous

Agents and Multiagent Systems (AAMAS’02), Bologna, Italy, July 15-19, 2002,

475-482.

Sabbadin, R., Lang, J., and Ravoanjanahary, N. 2007. Purely epistemic Markov decision

processes. In Proceedings of the Twenty-Second Conference on Artificial

Intelligence (AAAI’07), Vancouver, Canada, July 22-26, 2007, 1057-1062.

Sensoy, M., Fokoue, A., Pan, J.Z., Norman, T.J., Tang, Y., Oren, N., & Sycara, K. 2013.

Reasoning about uncertain information and conflict resolution through trust

revision. In Proceedings of the 12th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS’13), Saint Paul, MN, May 6-10, 2013,

837-844.

Shani, G., Pineau, J., and Kaplow, R. 2013. A survey of point-based POMDP solvers.

Autonomous Agents and Multiagent Systems, 27(1):1-51.

Silver, D. & Veness, J. 2010. Monte-Carlo planning in large POMDPs. In Proceedings of

the 24th Annual Conference on Neural Information Processing Systems

(NIPS’10), Vancouver, B.C., Canada, Dec. 6-9, 2010, 2164-2172.

Singh, A., et al. 2009. Efficient information sensing using multiple robots. Journal of

Artificial Intelligence Research. 34:707-755.

Smith, T. & Simmons, R. 2004. Heuristic search value iteration for POMDPs. In

Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence

(UAI’04), Banff, Alberta, Canada, July 7-11, 2004, 520–527.

Stone, P., Kaminka, G.A., Kraus, S., & Rosenschein, J.S. 2010. Ad hoc autonomous

agent teams: Collaboration without pre-coordination. In Proceedings of the 24th

National Conference on Artificial Intelligence (AAAI’10), Atlanta, Georgia, July

11-15, 2010, 1504-1509.

So, R. & Sonenberg, L. 2009. The roles of active perception in intelligent agent systems.

In PRIMA’05, LNAI 4078, ed. Lukose, D. and Shi, Z. Springer-Verlang: Berlin,

Germany, 139-152.

Somani, A., Ye, N., Hsu, D., & Sun Lee, W. 2013. DESPOT: Online POMDP planning

with regularization. In Proceedings of the 27th Annual Conference on Neural

Information Processing Systems (NIPS’2013), Lake Tahoe, Nevada, Dec. 5-8,

2013.

Sonu, E. & Doshi, P. 2013. Bimodal switching for online POMDP planning in multiagent

settings. In Proceedings of the 23rd International Joint Conference on Artificial

Intelligence (IJCAI’2013), Beijing, China, Aug. 3-9, 2013, 360-366.

www.manaraa.com

243

Sorg, J., Singh, S., & Lewis, R.L. 2011. Optimal rewards versus leaf-evaluation heuristics

in planning agents. In Proceedings of the 25th AAAI Conference on Artificial

Intelligence (AAAI’11), San Francisco, CA, Aug. 7-11, 2011, 465-470.

Spaan, M.T.J. 2008. Cooperative active perception using POMDPs. In Proceedings of the

AAAI 2008 Workshop on Advancements in POMDP Solvers.

Spaan, M.T.J., Veiga, T.S., & Lima, P.U. 2010. Active cooperative perception in

networked robotic systems using POMDPs. In Proceedings of the 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS’10), Taipei,

Taiwan, Oct. 18-22, 2010, 4800-4805.

Spaan, M.T.J. & Vlassis, N. 2005. Perseus: Randomized value iteration for POMDPs.

Journal of Artificial Intelligence Research, 24:195-220.

Stein, S., Williamson, S.A., & Jennings, N.R. 2012. Decentralized channel allocation and

information sharing for teams of cooperative agents. In Proceedings of the 11th

International Conference on Autonomous Agents and Multiagent Systems

(AAMAS’12), Conitzer, Winikoff, Padgham, and van der Hoek (eds.), Valencia,

Spain, June 6-8, 2012.

Sutton, R.S. and Barto, A.G. 1998. Reinforcement learning: an introduction. MIT

Press:Cambridge, MA.

Szita, I. & Szepesvari, C. 2010. Model-based reinforcement learning with nearly tight

exploration complexity bounds. In Proceedings of the 27th International

Conference on Machine Learning (ICML’2010), Haifa, Israel, June 21-24, 2010,

1031–1038.

Teacy, W.T., Patel, J., Jennings, N.R., & Luck, M. 2006. TRAVOS: Trust and reputation

in the context of inaccurate information sources. Autonomous Agents and

Multiagent Systems, 12(2):183-198.

Watts, D.J. & Strogatz, S.H. 1998. Collective dynamics of ‘small-world’networks.

Nature, June 4, 393:440-442.

Wettlaufer, D., Arunachalam, H., Atkin, G., Eck, A., Soh, L.-K., & Belli, R.F. 2015.

Determining potential for breakoff in time diary survey using paradata. In

Proceedings of the 70th Annual Conference of the American Association for

Public Opinion Research, Hollywood, Florida, May 14-17, 2015

Weyns, D., Helleboogh, A., and Holvoet, T. 2005. The packet-world: a test bed for

investigating situated multi-agent systems. In R. Unland, M. Klusch, & M. Calisti

(Eds.), Software Agent-Based Applications, Platforms, and Development Kits,

383-408.

Weyns, D., Steegmans, E., & Holvoet, T. 2004. Towards active perception in situated

multi-agent systems. Applied Artificial Intelligence. 18:867-883.

Widmer, G. & Kubat, M. 1996. Learning in the presence of concept drift and hidden

context. Machine Learning, 23:69-101.

Williams, J.D. & Young, S. 2007. Partially observable Markov decision processes for

spoken dialog systems. Computer Speech and Language, 21:393-422.

www.manaraa.com

244

Wooldridge, M. 1999. Intelligent Agents. In: Multiagent systems: a modern approach to

distributed artificial intelligence, The MIT Press, Cambridge, MA, 27–77.

Yin, D., Hong, L., Xue, Z., & Davison, B.D. 2011. Temporal dynamics of user interests

in tagging systems, In Proceedings of the Twenty-Fifth Conference on Artificial

Intelligence (AAAI’11), San Francisco, California, Aug. 7-11, 2011, 1279-1285.

Yorke-Smith, N., Saddati, S., Meyers, K.L., & Morley, D.N. 2009. Like an intuitive and

courteous butler: a proactive personal agent for task management. In Proceedings

of the 8th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS’09), Budapest, Hungary. May 13-15. 337-344.

Zhang, Z. & Chen, X. 2012. FHHOP: A factored heuristic online planning algorithm for

POMDPs. In Proceedings of the 28th Conference on Uncertainty in Artificial

Intelligence (UAI’12), Catalina Island, USA, Aug. 15-17, 2012, 934-943.

Zilberstein, S. 1996. Resource-bounded sensing and planning in autonomous systems.

Autonomous Robots, 3:31-48.

Zilberstein, S. 2008. Metareasoning and bounded rationality. Proceedings of the AAAI

Workshop on Metareasoning: Thinking about Thinking.

Zilberstein, S. & Russell, S.J. 1993. Anytime sensing, planning, and action: A practical

model for robot control. In Proceedings of the Thirteenth International Joint

Conference on Artificial Intelligence (IJCAI’93), Bajcsy (ed.) Chambery, France,

Aug. 28-Sept. 3, 1993, 1402-1407.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	4-2015

	Reflective, Deliberative Agent-Based Information Gathering
	Adam D. Eck

	CHAPTER 1 INTRODUCTION
	1.1. Reflective, Deliberative Information Gathering
	1.2. Initial Research
	1.3. Dissertation Problems
	1.4. Solutions to Dissertation Problems
	1.5. Dissertation Contributions
	1.6. Dissertation Outline

	CHAPTER 2 BACKGROUND AND RELATED WORK
	2.1. Deliberative Information Gathering
	2.2. Deliberative Information Gathering with Active Sensing POMDPs
	2.2.1. Markov Decision Process
	2.2.2. Partially Observable Markov Decision Process
	2.2.3. Active Sensing POMDP
	2.2.4. Applications of the Active Sensing POMDP
	2.3. Reflective Information Gathering
	2.3.1. Reflection for Deliberative Information Gathering
	2.3.2. Reflection for the Active Sensing POMDP
	2.4. Multiagent Information Gathering with Limited Sensors
	2.5. Comparison of our Research to Prior Work

	CHAPTER 3 POTENTIAL-BASED REWARD SHAPING FOR POMDPS
	3.1. Introduction
	3.2. Background
	3.2.1. Online POMDP Planning
	3.2.2. Potential-Based Reward Shaping
	3.3. Potential-Based POMDP Planning
	3.3.1. Extending PBRS to Online POMDP Planning
	3.3.2. Impact of PBRS on Online Planning
	3.4. Experimental Setup
	3.4.1. Benchmark Problems
	3.4.1.1. Tag
	3.4.1.2. RockSample
	3.4.1.3. AUVNavigation

	The final benchmark problem considered in our experimental setup is AUVNavigation (Ong et al., 2010). In AUVNavigation, a robotic submarine agent is randomly placed on one side of a 20×7×4 3D underwater grid and must navigate through a set of rock ob...
	Altogether, AUVNavigation represents a very challenging benchmark problem compared to the other two benchmarks. Whereas the number of states and actions (13,537 and 6, respectively) in this problem is similar to RockSample, the number of observations...
	3.5. Results
	3.5.1. Tag Results
	3.5.1.1. Comparison of Full Breadth Planning With and Without Reward Shaping
	3.5.1.2. Comparison Between Potential Function Types
	3.5.1.3. Comparison of PBRS with Depth-Focused, State-of-the-Art Planning Algorithms
	3.5.2. RockSample Results
	3.5.2.1. Comparison of Full Breadth Planning With and Without Reward Shaping
	3.5.2.2. Comparison Between Potential Function Types
	3.5.2.3. Comparison of PBRS with Depth-Focused, State-of-the-Art Planning Algorithms
	3.5.3. AUVNavigation Results
	3.5.3.1. Comparison of Full Breadth Planning With and Without Reward Shaping
	3.5.3.2. Comparison Between Potential Function Types

	In particular, potential functions combining domain-dependent location information (for rock obstacle avoidance and movement towards the goal in Stages 2 and 3 using Type 1 potential function information) with either domain-independent information (fo...
	Moreover, for each successful potential function, performance often increased as the planning horizon increased, with HBGD eventually achieving the goal in nearly all (92%) runs. Therefore, planning with PBRS was also very beneficial in AUVNavigation,...
	3.5.3.3. Comparison of PBRS with Depth-Focused, State-of-the-Art Planning Algorithms

	From these figures, we again observe very successful performance by PBRS with the best potential function: HBGD achieved the highest discounted, cumulative rewards in all but the lowest amount of time for planning (𝜏=100 ms) and the highest proporti...
	3.5.4. Discussion
	3.6. Conclusions and Future Work

	CHAPTER 4 SITUATIONALLY-AWARE ONLINE HEURISTIC PLANNING FOR HIGHLY UNCERTAIN ENVIRONMENTS
	4.1. Introduction
	4.2. Background
	4.2.1. Online POMDP Planning
	4.2.2. Heuristic Search Algorithms for Online POMDP Planning
	4.3. Problem
	4.4. Solution Approach
	4.4.1. Planning Stages
	4.4.2. LSEM Heuristic
	4.4.3. DHS Situational-Awareness
	4.4.4. Theoretical Analysis
	4.5. Experimental Setup
	4.6. Results
	4.6.1. AUVNavigation Results
	4.6.2. Tag Results
	4.6.3. RockSample Results
	4.6.4. Discussion
	4.7. Conclusions

	CHAPTER 5 INTELLIGENT INFORMATION SHARING WITH LOCALIZED, NON-STATIONARY PHENOMENA
	5.1. Introduction
	5.2. LTIS
	5.2.1. LTIS Model
	5.2.2. Prior LTIS Research
	5.3. Non-Stationary Phenomena
	5.3.1. Modeling Non-Stationarity in LTIS
	5.3.2. Analyzing the Effect of Non-Stationarity
	5.4. Change Detection and Response
	5.5. Forgetting Outdated Beliefs
	5.6. Experimental Setup
	5.7. Results
	5.8. Conclusions

	CHAPTER 6 AD HOC INFORMATION GATHERING
	6.1. Introduction
	6.2. Problem
	6.2.1. AHIG Formulation
	6.2.2. Related Work
	6.3. POMDP Formulation
	6.3.1. AHIG as a POMDP
	6.3.2. Problems with POMDP Formulation
	6.4. Knowledge State MDP
	6.4.1. Incorporating Shared Information
	6.4.2. Knowledge State MDP Transformation
	6.4.3. Learning Knowledge State Dynamics
	6.5. Experimental Setup
	6.6. Results
	6.7. Conclusions

	CHAPTER 7 CONCLUSIONS AND FUTURE WORK
	7.1. Summary
	7.2. Future Work
	7.3. Contributions

	REFERENCES

