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As computational devices and entities become further established as routine, 

omnipresent components of our everyday lives (e.g., wearable sensors, smart homes, 

cyber-physical systems, embodied agents, human-robot interactions), such systems face 

an increased pressure to perpetually understand the complex, noisy, uncertain world 

around them in real-time.  This environmental knowledge enables computational systems 

to intelligently decide how to best behave in response to the current situation, adapt to the 

ever-changing conditions of the dynamic world, and accomplish system goals that 

ultimately aim to improve our daily experience.  However, achieving and maintaining 

such knowledge is very complicated due to the complexities and challenging properties 

of real-world environments. 

In this research, we study how to improve environment knowledge in intelligent 

agents and multiagent systems through reflective, deliberative information gathering.  By 

being deliberative, an agent intentionally and selectively chooses how to gather 

information.  By being reflective, an agent can self-evaluate its informational needs and 

performance in order to understand its needs and past sensing outcomes to best guide 

deliberative information gathering, as well as adapt and learn in an uncertain 

environment. 
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Within reflective, deliberative information gathering, this dissertation addresses 

two key problems: (1) the Analysis Problem, whereby an agent must determine how to 

measure and balance sensing benefits and costs in order to reflect and improve 

deliberative information gathering, (2) the Information Sharing Problem, whereby 

multiple agents must determine how to cooperatively sense together and share 

information to update collective beliefs.  

For the Analysis Problem, we propose two improvements to a popular framework 

for reasoning under uncertainty—partially observable Markov decision processes 

(POMDPs): (1) Potential-based Reward Shaping (PBRS) providing metareasoning about 

information gathering within time-constrained planning, and (2) Difference-based 

Heuristic Selection (DHS) with Long Sequence Entropy Minimization (LSEM) for 

situationally-aware planning capable of balancing knowledge improvement and costs 

minimization.  For the Information Sharing Problem, we propose two solutions for 

improving large team information sharing observing localized, non-stationary 

phenomena: (3) cooperative change detection and response and (4) forgetting-based 

adaptation of information sharing.  We also propose: (5) a learning-based approach for ad 

hoc information gathering that enables agents to learn how to share information without 

requiring pre-coordination.  
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CHAPTER 1 INTRODUCTION 
 

Many real-world applications of computer systems benefit from the use of 

artificial intelligence (AI) and multiagent systems (MAS).  For example, intelligent 

agents have found wide-ranging uses from intelligent tutoring systems and collaborative 

learning environments in education (e.g., D’Mello & Graesser, 2012; Khandaker et al., 

2011) to mixed-initiative systems supporting human users with routine tasks (e.g., 

Chalupsky et al., 2001; Myers et al., 2007; Yorke-Smith et al., 2009) to search and 

rescue robots that help discover human victims after disasters (e.g., Casper & Murphy, 

2003; Calisi et al., 2007). 

In particular, an intelligent agent is a unit situated in a specified environment 

capable of autonomously (1) sensing its environment to gather information about its 

current situation, (2) using this information to decide how to behave in the environment 

(e.g., based on internal goals), and (3) taking action to change the environment according 

to its decisions in order to complete tasks.  Through intelligence, hardware or software 

agents provide features such as reactivity to changing environments, proactive behavior 

aimed to accomplish goals, learning to improve performance over time, and social 

behavior to work together to solve complex problems (Wooldridge, 1999).  Together, 

these features enable a system to achieve valuable properties such as reliability, 

scalability, robustness, consistency, efficiency, and effectiveness.   

Achieving these benefits requires an agent to consistently make correct decisions 

appropriate to its current situation.  However, the quality of an agent’s decision making 

depends on the information gathered by the agent from its environment through sensing: 

without good information, even a rational agent could make wrong decisions and thus fail 
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to accomplish its goals and complete its tasks.  Unfortunately, proper sensing is made 

especially difficult due to challenging properties of environments common to many real-

world applications of intelligent agents, including noise, partial observability, non-

stationarity, and limited resources.  

For example, in a search and rescue robotics application, individual robots could 

be responsible for autonomously navigating a physical space to discover trapped victims 

in need of assistance within collapsed buildings after a powerful earthquake.  These 

robotic agents must be able to gather high quality information during sensing in order to 

know how to navigate through the space and identify all victims so that they can be freed 

from the rubble.  However, the quality of information gathered during sensing by these 

robots is negatively influenced by their environment.   For instance, smoldering fires 

might resemble the heat signature of a person to an agent’s infrared sensor, returning 

noisy, inaccurate information to the agent.   Additionally, the agents’ sensors can only 

view a limited portion of the disaster area at once, so the environment is only partially 

observable (with portions of the true state of the environment hidden from the agent at 

any particular point in time).  Furthermore, the environment can change while each agent 

is sensing (e.g., new buildings collapse), causing the prior information collected by 

agents to become outdated and in need of refresh to maintain accurate, up-to-date beliefs.  

Finally, the robots are powered by battery supplies and must therefore be careful when 

consuming limited energy to maximize the amount of area covered and/or their 

operational time in order to find the most victims.  Given that there are also multiple 

agents (i.e., robots) operating in the same environment, their actions can also work 

against one another, making sensing even more difficult.  For instance, robots might 
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move in front of each other’s sensors, adding noise to the resulting information gathered.  

Likewise, agents can otherwise change the environment (e.g., creating extra rubble by 

running into obstacles), making the environment even more non-stationary and requiring 

more sensing to maintain up-to-date beliefs.  

Given the challenges of sensing in complex environments, special care must be 

taken to make sure that agents appropriately sense to gather information with sufficient 

quality and quantity to inform their decisions, achieve goals, and complete tasks.  We 

next outline our research vision to address this necessity.  

1.1. Reflective, Deliberative Information Gathering 

To improve agent sensing in order to benefit agent reasoning and actuation, as 

well as overall system performance, this research focuses on reflective, deliberative 

information gathering
1
 by intelligent agents. By being deliberative, an agent 

intentionally and selectively chooses how to gather information, as opposed to 

considering sensing as a secondary behavior, which could instead potentially lead to 

suboptimal information gathering in complex environments.  By being reflective, an 

agent self-evaluates its informational needs and performance in order to understand its 

needs and past sensing outcomes to best guide deliberative information gathering, as well 

as adapt and learn as it faces new decisions in an uncertain environment.  Together, these 

qualities enable an intelligent agent to carefully consider its current knowledge, the 

knowledge required of its decisions, and the state of its environment in order to know 

                                                           
1
 By “information gathering”, we mean both the gathering of raw data/observations from the environment, 

as well as the transformation of such data into information useful for the agent’s reasoning.  We use the 

terms “sensing” and “information gathering” interchangeably throughout this dissertation. 
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how, when, and where to sense so that it improves the way it gathers the necessary 

information for its reasoning in an efficient and effective manner. 

In contrast, a non-deliberative (i.e., passive) information gathering agent would 

focus its reasoning solely on completing tasks and not explicitly think about how to act to 

perform good sensing now with the hope of potentially later benefitting its tasks.  For 

instance, a search and rescue robot that pre-computes a path to take through the disaster 

area and does not periodically adjust its movement or sensor positioning would be a non-

deliberative information gathering agent.  Furthermore, a non-reflective yet deliberative 

information gathering agent would not self-evaluate its sensing performance or learn over 

time how to improve its sensing from past experience.  For instance, a non-reflective 

search and rescue robot might not recognize that continually adjusting its vision camera 

isn’t helping it find new victims due to a lack of ambient light in the collapsed building, 

and thus the agent would not switch to focus its limited energy resources on more 

effective infrared sensing in order to better find victims. 

Overall, this research both (1) extends classical metareasoning (e.g., Cox & Raja, 

2011; Raja & Lesser, 2007; Zilberstein, 2008) from decisions about reasoning control to 

decisions about sensing control which benefits both sensing and the agent’s task-level 

decisions, and (2) extends prior research on deliberative information gathering, 

sometimes called active sensing/perception (e.g., Weyns, Steegmans, & Holvoet, 2004), 

to be more introspective about agent performance and needs in order to encourage 

improved adaptation over time.  

For instance, in our search and rescue running example, a robotic agent should 

deliberatively manage its sensors to maintain high quality sensing while moving through 
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the complex environment terrain.  This could include frequently re-aiming its visual 

camera and infrared sensors to best scan for victims, as well as planning routes to 

intentionally navigate through areas where the agent has the least knowledge of the 

presence of victims.  To determine how to best deliberatively sense over time, the agent 

should reflect on what it already knows about the complex environment, as well as the 

potential benefits of different types of actions (e.g., choosing to enter a room, pointing its 

camera in a different direction) and the costs of these actions (e.g., consumed battery 

power, wasted time, possible noise which could corrupt its current knowledge).  

Following such behavior, the robot should then be able to gather both higher quality 

information (through choosing the best sensing actions) as well as a greater quantity of 

information (by lasting longer in the environment before its battery expires).  Together, 

such information better informs the agent’s decisions and enables it to find the most 

victims to rescue. 

1.2. Initial Research 

Our research on reflective, deliberative information gathering for intelligent 

agents and multiagent systems was initially inspired by our earlier research (Eck, 2010) 

studying the Environment Impact Problem: 

Environment Impact Problem: How can an agent mitigate any changes 

to its environment caused by sensing that have lasting impacts on both the 

information gathered and the ability of the agent to accomplish its tasks in 

order to avoid corrupting the environment? 

In the Environment Impact Problem, actions taken by agents for the purpose of 

sensing not only result in gathered information used to change the agent’s knowledge, but 

these actions can also change the agent’s environment and affect its future behavior.   In 
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the Environment Impact Problem, we studied how an agent can reflect to anticipate these 

changes to the environment and predict their consequences, and then determine how to 

deliberatively act in order to mitigate or avoid problems caused by environment changes. 

One type of environment change we have studied involves the use of stateful 

resources by agents to gather information.  As an agent interacts with a stateful resource, 

the agent can change the state of the resource, causing dynamic (rather than fixed) costs 

to the agent based on the state of the resource.  Furthermore, the quality and quantity of 

information gathered by a stateful resource depends on its current state, providing greater 

accuracy or more information in some states than others.  We call this effect the 

Observer Effect of agent sensing. Overall, agents must be mindful of the internal state 

of resources used during sensing (and how its actions change the state) in order to gather 

the best information at the lowest cost, and we have studied solutions for both modeling 

stateful resource behavior, as well as approaches for managing usage of such resources. 

For example, in a mixed-initiative system application where an intelligent agent 

works alongside a human user to support the user’s daily tasks (e.g., an office worker 

scheduling meetings (Chalupsky et al., 2001; Myers et al., 2007; Yorke-Smith et al., 

2009) or a student learner performing educational assignments (D’Mello & Graesser, 

2012; Khandaker et al., 2011)), the agent might need to interact directly with the human 

user (a stateful resource) to gather information and understand the user’s preferences so 

that it can best support the user and her tasks.  Such interactions can interrupt and distract 

the user from her current activities.  If done at inopportune times, these interruptions can 

disrupt the user’s cognitive processes (Mark, Gudith, & Klocke, 2008) and increase user 

frustration (Adamczyk & Bailey, 2004) (the resource states), and cause the user to want 
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to return quickly to her current activities or even quit using the system (Klein, Moon, & 

Picard, 2002), altogether affecting the quality and quantity of information provided back 

to the mixed-initiative agent.  Properly managing human-agent interactions to gather 

information in this example enables us to construct more efficient and effective agents, as 

well as improve the end-user experience and productivity. 

Alternatively, sensing actions taken by agents can also have permanent effects on 

the environment.  That is, an action can produce a change in the environment state that 

could prevent the agent from ever gathering necessary information or achieving certain 

tasks and goals.  For instance, in our search and rescue example, if a robot chooses to 

navigate through a dangerous hallway to search for victims, its movement through the 

hallway could further weaken the structure of the building and collapse other paths, 

preventing the robot from exploring nearby areas or rescuing other victims in the future.  

Thus, current actions have an influence on the future abilities of the robot, including its 

ability to gather information and/or accomplish its goals. 

As part of studying reflective, deliberative information gathering, we have also 

extended our Master’s thesis research on the Environment Impact Problem and the 

Observer Effect (Eck, 2010) separate from this dissertation.  First, we have enhanced the 

formalization of the problem of modeling this effect. We have also improved our 

POMDP-based solution framework for metacognitively managing agent sensing, which 

allows the agent to reflect on the impacts of sensing actions with respect to changing both 

stateful resources and the agent’s knowledge, then deliberatively choose sensing actions 

expected to best improve the agent’s knowledge under the Observer Effect.  This research 

has been published in the Journal of Autonomous Agents and Multiagent Systems 
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(JAAMAS) (Eck & Soh, 2013c).  We have also improved our MineralMiner simulation 

for studying environment impacts from sensing (including both the Observer Effect and 

permanent effects on the environment), amongst many other environment properties that 

make sensing a challenging activity.  This research has been published in the Multiagent 

and Grid-Based Systems (MAGS) journal (Eck & Soh, 2013b). 

1.3. Dissertation Problems 

To better understand both (1) how to produce reflective, deliberative information 

gathering in intelligent agents, as well as (2) the benefits of this approach for agent-based 

sensing, this dissertation focus on two core problems: the Analysis Problem, and the 

Information Sharing Problem.   

Analysis Problem: How should an agent measure or predict the benefits 

and costs of performing various sensing actions with respect to gathering 

information, then analyze the resulting tradeoff, in order to best guide its 

deliberative sensing?  

First, the Analysis Problem is at the core of reflective, deliberative sensing: an 

agent must be able to measure and/or predict the benefits and costs of its actions with 

respect to its current knowledge and informational needs in order to achieve reflective 

sensing behavior.  Within this problem, we study different methods for performing such 

measurement and prediction at different levels of agent reasoning.  We also study 

different techniques and approaches for analyzing these measures and predictions in 

order to best guide deliberative sensing and balance the tradeoffs between sensing 

benefits and costs. 

For instance, in our search and rescue running example, one possible useful 

measure of sensing benefits is the improvement in the certainty of an agent’s beliefs after 
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gathering new information.  Since the location of victims is inherently uncertain, the 

agent wants to know with high certainty whether a victim is nearby before moving on to 

another room (lest it accidentally leave victims behind undiscovered).  In contrast, the 

agent might measure the costs of sensing based on the amount of time different sensing 

actions take (e.g., slowly moving deeper into the room vs. quickly re-aiming its sensors), 

as well as the limited battery energy required for each action (e.g., a low cost for forward 

movement vs. a high cost for turning around). Then, analyzing this information, the agent 

can deliberatively choose the action to continue its sensing that best balances benefits and 

costs and boost its overall performance. 

Information Sharing Problem: How can agents leverage multiagent 

cooperation in order to share information when information gathering is 

limited (e.g., agents have limited sensors or resources)? 

Second, rather than looking at intelligent agents as isolated individuals 

responsible for their own independent information gathering, we can also look at how 

cooperative agents can help one another in the sensing process.  By combining multiple 

agents, we can achieve benefits such as increased coverage of the environment (when 

individual agents suffer from a limited world view through partial observability), timelier 

sensing (especially in dynamic, non-stationary environments), higher accuracy and faster 

uncertainty reduction (by combining multiple viewpoints of the environment to avoid 

noise), as well as better limited resource management. 

Towards information sharing, in this research we study the dynamics of 

information flow through multiple cooperative agents working together as they share 

information, as well as solutions for (1) determining when and where each agent should 

sense, (2) how agents should share information with their neighbors, (3) how to 

incorporate shared information in agent beliefs, and (4) how to share or conserve limited 
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resources for sensing between cooperative agents.  As a team, agents can reflect together 

on their collective knowledge and informational needs, as well as either cooperatively or 

individually plan how to deliberatively sense in order to carry out team goals and achieve 

better sensing as a group rather than as individual agents.  In particular, we are interested 

in environments where the sensing capabilities of agents are limited compared to the size 

of the team of cooperative agents (e.g., only a few agents have sensors to directly observe 

the environment).  We are also interested in environments, called ad hoc environments, 

where agents have no prior knowledge of each other or their peers’ capabilities and 

willingness to cooperate, preventing pre-coordination of information sharing behavior. 

For instance, in our search and rescue robotics example, a small group of robots 

developed by different organizations could work together to canvas a damaged building 

at once, and they belong to a larger team of agents (e.g., emergency responders, 

dispatchers) that cannot otherwise observe the disaster area. These robots could 

cooperatively compare their initial knowledge, and then decide how to divide up the area 

for exploration in order to speed up identification of victims, as well as redundantly 

overlap their sensing areas to provide additional information to increase overall certainty 

after searching through the environment for victims.  Agents could learn how to weight 

their own observations versus how much they should trust shared information from their 

teammates when updating their beliefs.  Depending on the circumstances, the robots 

might frequently communicate with each other to maintain up-to-date beliefs, or they 

might conserve energy by communicating infrequently to maximize how long they can 

operate in the environment. 
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Figure 1.1: Summary of Research 

1.4. Solutions to Dissertation Problems 

Towards solving these two core problems—the Analysis Problem and the 

Information Sharing Problem—and better understanding reflective, deliberative 

information gathering, the research presented in this dissertation has accomplished the 

following, summarized in Figure 1.1 and described in more detail below. 

To address the Analysis Problem, we propose two novel approaches to reflecting 

on the benefits and costs of sensing actions, then optimizing the resulting tradeoff within 

a popular framework for agent reasoning (e.g., Boutilier, 2002; Doshi & Roy, 2008; 

Spaan, Veiga, & Lima, 2010; Williams & Young, 2007):  the partially observable 

Markov Decision process (POMDP) (Kaelbling, Littman, & Cassandra, 1998).  These 

two solutions include: (1) potential-based reward shaping (PBRS) (Ng, Harada, & 

Russell, 1999; Asmuth, Littman, & Zinkov, 2008) for POMDPs, and (2) difference-based 
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heuristic selection (DHS) with the long sequence entropy minimization (LSEM) heuristic 

for situationally-aware heuristic search-based online planning.  

First, our PBRS for POMDPs solution is an approach to embed additional 

measures reflecting action benefits and costs (including with respect to sensing) in reward 

optimization by agents to produce agent behavior that best addresses the tradeoff between 

benefits and costs to improve overall agent behavior. Unlike past attempts to include 

similar information to guide action selection in POMDPs (e.g., Mihaylova et al., 2002; 

Araya-Lopez et al., 2010), our approach offers important theoretical guarantees on agent 

performance.  As an additional benefit, this approach also generalizes to a solution for 

improving agent planning in devices with constrained computational resources (e.g., 

wireless sensors, robots) by guiding the agent towards large rewards beyond the myopic 

planning (i.e., limited number of planning steps) caused by a lack of computational 

power.  It also represents a novel technique for adding metareasoning to agent reasoning 

with POMDPs without increasing the size of the agent’s state space (and thus does not 

increase the computational complexity of the reasoning process).  Overall, PBRS both 

addresses the Analysis Problem studied in this dissertation, as well as offers broader 

impacts for agent reasoning in general.  This research has been published both as an 

extended abstract (Eck et al., 2013) at AAMAS 2013 and more recently as an article in 

JAAMAS (Eck et al., 2015).  This solution will be discussed in greater detail in Chapter 

3 of this dissertation. 

Second, DHS + LSEM represents a novel heuristic search algorithm for online 

planning in POMDPs.  In particular, the LSEM heuristic guides agent planning towards 

policies (i.e., action plans) that quickly gather the necessary information to operate in 
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highly uncertain environments (such as those commonly found in real-world applications 

of multiagent systems).  It does so by reflecting on the expected certainty in agent 

knowledge (a measure of sensing benefit, directly addressing the high uncertainty in the 

domain) after taking an action in order to determine which action sequences to consider 

during planning and find a good policy.  This work differs from our PBRS solution in 

that LSEM reflects on sensing benefits when choosing how to search through the policy 

space while planning, whereas PBRS reflects on sensing benefits during the choice of 

sensing action to take during execution of plans (and thus at a different level of agent 

reasoning).  Additionally, DHS provides situationally-aware planning that enables the 

agent to select between different heuristics measuring different types of information 

when choosing how to expand planning during plan construction.  As such, DHS enables 

the agent to consider both the benefits of sensing (revealed through LSEM) with other 

heuristics (reflecting sensing costs) to quickly find approximately optimal policies.  

Altogether, DHS + LSEM can find good policies two orders of magnitude faster than the 

best previously reported heuristic search online POMDP planning algorithms.  This 

research was published as a full paper at the AAMAS 2014 conference (Eck & Soh, 

2014b) and will be discussed in greater detail in Chapter 4 of this dissertation. 

Third, to address the Information Sharing Problem, we first focus on challenging 

domains with localized phenomenon observed by only a small subset of the agents within 

a large cooperative team (e.g., observing individual users of a large mixed initiative 

software system), requiring large team information sharing (LTIS) (Glinton, Scerri, & 

Sycara, 2009, 2010, 2011; Pryymak, Rogers, & Jennings, 2012) to achieve and maintain 

consistent and accurate shared beliefs.  We produce solutions to overcome a challenging 
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problem caused by environment non-stationarity: the institutional memory problem 

where large portions of the team of agents become stuck with outdated beliefs as the 

environment changes (e.g., newly collapsed buildings, changing user preferences or 

goals), no matter how much additional information enters the team through additional 

sensing.  In particular, we develop two algorithms for mitigating this problem: (1) a 

change detection and response algorithm where agents work together within local sub-

teams to quickly detect changes to the observed phenomenon, and (2) a forgetting-based 

algorithm, where agents independently use belief decay to maintain up-to-date beliefs to 

avoid problems caused by faulty agents or malicious information.  Both solutions 

successfully avoid the institutional memory problem and lead to consistent, accurate 

beliefs through the team as the environment changes.  This research has been published 

as an extended abstract at AAMAS 2013 (Eck & Soh, 2013a) and as a full paper with the 

WEIN workshop at AAMAS 2014 (Eck & Soh, 2014a).  This work will be discussed in 

greater detail in Chapter 5 of this dissertation. 

Fourth, to further address the Information Sharing Problem, we also focus on ad 

hoc environments where agents can either sense on their own or share information with 

peers, except the agents have no advance knowledge of their peers’ capabilities and 

willingness to work together.  Thus, agents cannot pre-coordinate their joint behavior in 

advance, and instead must learn both when to work together (through sharing) and when 

to work independently (through sensing with the agent’s own sensors) in order best 

update agent knowledge over time.  We propose a solution called the Knowledge State 

MDP where agents individually learn the benefits of relying on each type of source to 

maximize knowledge improvement. This research was accepted for publication as a full 
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paper at the AAMAS 2015 conference (Eck & Soh, 2015) and will be discussed in 

greater detail in Chapter 6 of this dissertation. 

1.5. Dissertation Contributions 

The research for this dissertation has made several important contributions to the 

fields of artificial intelligence and multiagent systems, including: 

1. A better fundamental understanding of agent-based sensing in complex 

environments, valuable for a wide range of intelligent agents and 

multiagent systems domains.  This knowledge can be applied to improve 

agent reasoning and actuation in different applications, as well as 

improves our overall understanding of general artificial intelligence. 

2. A set of solutions to provide reflective, deliberative information gathering 

to improve agent-based sensing, including single-agent POMDP solutions 

and cooperative agent team-based solutions. 

3. New techniques for metareasoning by intelligent agents with broader 

impacts beyond sensing control. 

4. Implemented simulation environments mimicking real-world scenarios 

and applications for studying agent-based sensing. 

5. The addition of implementations of many of our solutions to a Java library 

for artificial intelligence that can be reused for other AI and agent-based 

projects. 

First, from a fundamental research perspective, the dissertation both (1) explores 

difficult aspects of agent-based sensing in complex environments in order to improve our 

scientific understanding of the relationship between information gathering and agent 

reasoning and actuation, as well as (2) produces general-purpose, domain-independent 

solutions that can be used to engineer agent-based sensing systems in a wide range of 

domains and real-world applications of intelligent agents and multiagent systems.  For 

example, this research could be applied to applications in autonomic computing; 

computer supported, collaborative learning; cyber-physical systems; mixed-initiative 
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systems; robotics; survey systems; ubiquitous and pervasive computing; and wireless 

sensor networks. 

Second, from a broader impacts perspective, the dissertation includes solutions 

that not only improve agent sensing through reflection and deliberation, but can also 

improve other aspects of agent reasoning.  Specifically, our PBRS for POMDPs solution 

represents a general-purpose approach to adding metareasoning to the popular POMDP 

agent reasoning framework.  This solution allows not only reflections on the benefits and 

costs of agent sensing to be used to guide action selection, but any measure of benefits 

and costs across any agent goal.  Chapter 3 details some other types of measures that the 

agent can use to reflect on its overall needs and future expectations to improve reward 

maximization in complex environments.  Additionally, our DHS heuristic selection 

approach to improve online POMDP planning can work with any set of heuristics, not 

just those maximizing uncertainty reduction to improve agent sensing (e.g., LSEM). 

Finally, from a software perspective, the research for this dissertation has resulted 

in two types of products.  First, this research has produced and enhanced simulation 

environments for evaluating agent-based sensing, including the simulations for large 

team information sharing and ad hoc information gathering, as well the implementation 

of many popular POMDP benchmark problems in a unified framework and programming 

language (Java).   Second, combined with the other research activities of the authors, this 

research has also contributed implementations of our solutions to a Java-based library for 

general artificial intelligence techniques called IAMAS (which we intend to release as 

open source software for general, free availability to other programmers and researchers). 
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1.6. Dissertation Outline 

The rest of this dissertation is organized as follows.  First, in Chapter 2, we 

discuss prior work within the agent-based sensing literature in order to frame our research 

on reflective, deliberative information gathering in the context of the state-of-the-art.  We 

also provide some general background on concepts and techniques used throughout the 

dissertation.  Next, we describe our two solutions for the Analysis Problem in Chapters 3 

and 4, respectively: (1) PBRS for POMDPs and (2) the DHS + LSEM heuristic search 

algorithm for online POMDP planning.  Then, in Chapter 5, we detail our research on the 

institutional memory subproblem of the Information Sharing Problem with solutions.  

Afterwards, in Chapter 6, we detail our learning-based Knowledge State MDP solution to 

ad hoc information gathering subproblem of the Information Sharing Problem.  In each of 

these four solution chapters, we also present experimental studies used to evaluate our 

solutions, as well as investigate the benefits of reflective, deliberative information 

gathering in agent-based sensing.  Please note that these four chapters are each based on 

our prior publications (aforementioned in Section 1.3).  Finally, we conclude in Chapter 7 

by summarizing our dissertation research, as well as we outline future work we intend to 

continue. 
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CHAPTER 2   BACKGROUND AND RELATED WORK 
 

In this chapter, we describe related research from the intelligent agents and 

multiagent systems literature to our overall focus of reflective, deliberative information 

gathering.  First, we introduce some general work on deliberative information gathering 

in Section 2.1.  Next, in Section 2.2, we detail more specific work using active sensing 

POMDPs for deliberative information gathering, which is closely related to our PBRS for 

POMDPs and DHS + LSEM solution approaches presented in Chapters 3 and 4, 

respectively, as well as our Knowledge State MDP solution in Chapter 6.  Then, we 

describe prior work that initially added reflectiveness to deliberative information 

gathering in Section 2.3.  Afterwards, we discuss related work from the multiagent 

sensing literature in Section 2.4.  Finally, in Section 2.5, we conclude by discussing how 

our research on reflective, deliberative information gathering (both from this dissertation 

and our prior work on the Environment Impact Problem) fits within the context of the 

state-of-the-art introduced in this chapter.   

Along the way, we also introduce some background, including an overview of 

MDPs and POMDPs in Section 2.2.1-2.2.2, which is relevant to both the related work in 

Section 2.2, as well as our solutions in Chapters 3, 4, and 6.  Background or related work 

only relevant to specific parts of our research will be introduced later in the appropriate 

chapters. 

2.1. Deliberative Information Gathering 

Although the vast majority of intelligent agents and multiagent systems research 

focuses primarily on the reasoning and actuation components of agent behavior (and thus 

generally relegates sensing to a by-product of other agent activities), research focusing on  
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Table 2.1: Related Deliberative Information Gathering Research 

Reference Contributions 

(Bajcsy, 1988) 

Bajcsy advocated for the use of active perception to control 

information gathering for robotics, which represented one of the 

earliest calls for deliberative information gathering in agents.  They 

developed a hierarchical approach to improve sensing both locally 

and globally. 

(Floreano & Mondada, 

1994) 

Floreano  & Mondada studied the use of neural networks and genetic 

algorithms to learn controllers to guide active perception in robotics.  

Their algorithms resulted in learned automated behavior such as 

targeted exploration for missing information. 

(Grass & Zilberstein,  

1997; 2000) 

Grass & Zilberstein developed Value-Driven Information Gathering 

(VDIG) for automating information gathering from the internet to 

support human users’ decisions. 

(Lesser et al., 2000) 

Lesser et al. studied resource-Bounded Information Gathering (BIG), 

including an agent for (goal oriented and opportunistic) planning for 

information gathering from sources distributed across the internet. 

(Weyns, Steegmans, & 

Holvoet, 2004) 

Weyns, Steegmans, & Holvoet developed one of the first domain-

independent frameworks for active sensing by agents.  They studied 

this framework in the context of situated agents (researching the 

relationship and connections between an agent and its environment). 

(Weyns, Helleboogh, & 

Holvoet, 2005) 

Weyns, Helleboogh, & Holvoet implemented a simulation 

environment called Packet-World for their study of active sensing. 

(So & Sonenberg, 2009) 

So & Sonenberg studied the application of active perception for 

situation awareness in intelligent agents in order to direct an agent’s 

attention to the most interesting or relevant features of the 

environment for information gathering. 

agent sensing as a primary objective has recently begun growing in popularity in the 

literature.  In this subsection, we review some of the general history of deliberative 

information gathering within the agents literature in order to place our research in the 

context of the state-of-the-art.  We summarize this history in Table 2.1.  We will further 

elaborate in Section 2.2 on recent deliberate sensing research using a similar type of 

solution to our solutions in Chapters 3 and 4. 

To begin, Bajcsy (1988) and Floreano & Mondada (1994) were two of the first 

researchers to explore the needs for (and benefits of) deliberately choosing how to 

perform sensing in order to improve the quality and quantity of information gathered by 
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agents.  Specifically, both explored an area of research called active perception
2
 whereby 

a robotic agent makes control decisions about gathering information used to model the 

environment, controlling either (1) what raw data to collect as observations during 

sensing (e.g., active control of vision cameras (Bajcsy, 1988)), or (2) what information to 

extract from raw data when processing observations from the agent’s sensors.  Using 

active perception, Bajcsy (1988) and Floreano & Mondada (1994) advocated that 

autonomous, intelligent agents could improve their understanding of the world around 

them, which in turn would improve their ability to complete tasks in the environment.  To 

perform active perception, Bajcsy (1988) considered a hierarchical approach that 

improved information gathering both locally with respect to individual models of the 

environment, as well as globally across components used for sensing.  Floreano & 

Mondada (1994), on the other hand, used neural networks and genetic algorithms to learn 

how to sense in complex environments, resulting in automated behavior such as targeted 

exploration for missing information. 

 A few years later, in response to the growing amount of information valuable to 

human users offered through various web pages and services, Grass & Zilberstein (1997; 

2000) developed an agent-based framework called Value-Driven Information Gathering 

(VDIG) using software agents to choose what information to collect for users, as well as 

how to collect it, in order to support human users’ decisions (e.g., purchasing software 

online). Similarly, Lesser et al. (2000) developed an autonomous, intelligent software 

agent called BIG (resource-Bounded Information Gathering) that was capable of 

multilevel planning to choose how to deliberatively gather information from the internet 

                                                           
2
 Recall (c.f., Section 1.1) that in this research, active perception and active sensing are synonymous with 

deliberative information gathering.  “Active” refers to the agent conscientiously (i.e., deliberatively) 

choosing actions for their sensing or information gathering value. 
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for human users.  Details of how VDIG and BIG performed deliberative information 

gathering are provided in Section 2.3.   

More generally, Weyns, Steegmans, & Holvoet (2004) were one of the first to 

study the need for general purpose, domain independent approaches for deliberative 

information gathering by agents.  In particular, they studied what they called active 

sensing
3
 and focused on improving information gathering for agents as part of their 

research studying situated agents (i.e., the relationship and connections between agents 

and their environments). They developed an extensible framework that divides 

information gathering into three components: (1) sensing, which collects raw values from 

the environment, (2) interpreting, where raw observations are converted into domain-

specific representations for knowledge, and (3) filtering, where only the relevant and/or 

important observations are retained for knowledge refinement.  We take a similar 

perspective
4
 to information gathering in our research (as a process of collecting and 

transforming raw observations into useful information for refining agent knowledge to 

support agent reasoning).  To control information gathering in a deliberative manner, 

Weyns, Steegmans, & Holvoet propose that domain-specific optimizations over sensing 

benefits and costs should be embedded by the developer in the selection of which raw 

observations to collect in the sensing component, as well as in the filtering of processed 

observations in the filtering component.  As part of this research, Weyns, Helleboogh, & 

                                                           
3
 Again, recall (c.f., Section 1.1) that in this research, active perception and active sensing are synonymous 

with deliberative information gathering.  “Active” refers to the agent conscientiously (i.e., deliberatively) 

choosing actions for their sensing or information gathering value. 
4
 However, we use the terms “sensing” and “information gathering” interchangeably and do not limit the 

meaning of the term “sensing” to be collecting raw observations, as done by Weyns, Steegmans, & Holvoet 

(2004) 
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Holvoet (2005) also developed one of the first testbed environments for deliberative 

information gathering in their Packet-World simulation. 

Similar to Weyns, Steegmans, and Holvoet’s (2004) research on situated agents, 

So & Sonenberg (2009) explored the use of active perception to improve situation 

awareness within intelligent agents.  That is, in order to best understand the agent’s 

current situation in its situated environment, So & Sonenberg advocated the use of active 

perception to proactively direct the agent’s attention to the most relevant or important 

aspects of its environment for observation (e.g., interesting events or to fill in missing 

information from the agent’s knowledge) and improve upon the traditional belief-desire-

intention (BDI) framework (Rao & Georgeff, 1995) for agent reasoning.  To guide active 

perception, So & Sonenberg considered the use of a logical events calculus.  

2.2. Deliberative Information Gathering with Active Sensing POMDPs 

One popular solution approach to performing deliberative information gathering 

in the intelligent agent literature is the active sensing (or active perception) POMDP.  In 

particular, the active sensing POMDP has been commonly used to (1) model the 

dynamics and goals of the deliberative information gathering problem for agents and (2) 

generate dynamic plans for choosing sensing actions to perform based on the agent’s 

current situation (e.g., Doshi and Roy, 2008; Guo, 2003; Spaan et. al, 2010; Williams and 

Young, 2007). In this subsection, we first formalize the general POMDP (and the related 

fully observable MDP) to provide the background necessary for understanding both (1) 

important prior work in deliberative information gathering, as well as (2) three of our 

solution techniques for reflective, deliberative information gathering (presented in 

Chapters 3, 4, and 6 later in this dissertation).  Then, we discuss how the deliberative 
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information gathering problem is commonly modeled within a POMDP.  Finally, we 

provide examples of prior work using active sensing POMDPs for deliberative 

information gathering.  We summarize the related work on active sensing POMDPs in 

Table 2.2. 

2.2.1. Markov Decision Process 

Formally, a (discounted, finite state) MDP can be represented mathematically as a 

tuple 〈𝑆, 𝐴, 𝑇, 𝑅, 𝛾〉 [Kaelbling, Littman, & Cassandra, 1998].  Within this model, 𝑆 = {𝑠} 

represents the set of states of the agent’s environment.  Since the environment is fully 

observable, the agent always knows the current state 𝑠 in an MDP.  The agent can 

perform actions from 𝐴 = {𝑎}.  Taking an action 𝑎 in state 𝑠 both (1) earns the agent a 

reward 𝑅(𝑠, 𝑎) according to a reward function 𝑅: 𝑆 × 𝐴 → ℝ and (2) stochastically 

changes the state of the environment to a next state 𝑠′.  The transition function 𝑇: 𝑆 × 𝐴 ×

𝑆 → [0,1] models the probability that action 𝑎 changes the dynamic environment from 

state 𝑠 to 𝑠′: 𝑇(𝑠, 𝑎, 𝑠′) = 𝑃(𝑠′ | 𝑠, 𝑎).  

The agent’s goal is to determine a plan of actions called a policy 𝜋: 𝑆 → 𝐴 that 

controls what action the agent takes based on its current state in order to maximize 

cumulative, discounted rewards: 

                                                       𝐸[∑ 𝛾𝑡𝑟𝑡
𝑛
𝑡=0 ]     (2.1) 

where 𝑟𝑡 is the reward received at time 𝑡, 𝑛 is the planning horizon (i.e., number of steps 

to plan ahead), and 𝛾 ∈ [0,1) is a discount factor for weighting future, uncertain rewards.  

2.2.2. Partially Observable Markov Decision Process 

The POMDP, on the other hand, is an extension of the MDP to partially 

observable environments.  Formally, a POMDP can be represented mathematically as a 
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tuple 〈𝑆, 𝐴, 𝑍, 𝑇, 𝑂, 𝑅, 𝛾, 𝑏0〉 with 𝑆, 𝐴, 𝑇, 𝑅, 𝛾 as in the MDP (Kaelbling, Littman, & 

Cassandra, 1998).  Since POMDPs are used in partially observable environments, the 

current state of the environment 𝑠 is assumed to be hidden from the agent.  Instead, after 

each action, the agent receives an observation from the set 𝑍 = {𝑧} that reveals some 

information about the next state of the environment 𝑠′.  The observation function 

𝑂: 𝑆 × 𝐴 × 𝑍 → [0,1] models the probability that next state 𝑠′ and action 𝑎 produce 

observation 𝑧: 𝑂(𝑠′, 𝑎, 𝑧) = 𝑃(𝑧 | 𝑠′, 𝑎).  

Since the environment state is hidden from the agent at any point in time, the 

agent faces uncertainty about the current state of the environment.  This type of 

uncertainty is addressed by the agent through maintaining a probability distribution over 

possible states called a belief state 𝑏: 𝑆 → [0,1] such that 

                                                           ∑ 𝑏(𝑠) = 1𝑠∈𝑆      (2.2) 

                                                         𝑏(𝑠) ≥ 0, ∀𝑠 ∈ 𝑆    (2.3) 

so that 𝑏 ∈ 𝛱(𝑆), where 𝛱(𝑆) denotes the set of probability distributions over 𝑆.  

After taking action 𝑎 and receiving observation 𝑧, the agent’s belief state 

probability distribution 𝑏 is updated to incorporate the new information using a Bayesian 

update: 

   𝑏𝑎,𝑧(𝑠′) = 𝑃(𝑠′| 𝑎, 𝑧, 𝑏) =
𝑃(𝑧 | 𝑠′,𝑎,𝑏)𝑃(𝑠′| 𝑎,𝑏)

𝑃(𝑧 | 𝑎,𝑏)
=

1

𝑃(𝑧 | 𝑎,𝑏)
𝑂(𝑠′, 𝑎, 𝑧) ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑏(𝑠)𝑠∈𝑆  (2.4) 

where 𝑃(𝑧 | 𝑎, 𝑏) normalizes belief state 𝑏𝑎,𝑧 so that it remains a valid probability 

distribution under Eq. 2.2.  As the agent performs more and more actions and thus 

receives more and more observations, its beliefs change from the initial belief state 𝑏0 

(the prior distribution over environment states, often a uniform distribution) to a posterior 
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belief state 𝑏𝑡 (after taking 𝑡 actions and receiving 𝑡 observations) in order to reduce the 

agent’s uncertainty about the current environment state. 

Using the POMDP model, the agent’s goal is to maximize the cumulative rewards 

it earns for taking actions while operating in the environment.  Since the agent is 

uncertain about the current state of the environment, it aims to maximize expected 

rewards: 

                      𝐸[𝑟𝑡] = 𝑅(𝑏𝑡, 𝑎𝑡) = 𝐸[𝑅(𝑠𝑡, 𝑎𝑡)| 𝑏𝑡] = ∑ 𝑏𝑡(𝑠𝑡)𝑅(𝑠𝑡, 𝑎𝑡)𝑠𝑡∈𝑆  (2.5) 

In order to accomplish this goal, the agent plans a policy 𝜋: 𝛱(𝑆) → 𝐴 (over belief 

states instead of states, as in an MDP) prescribing an action 𝑎 to take dependent on the 

agent’s belief state 𝑏.  The policy is calculated by recursively or iteratively solving the set 

of Bellman equations to calculate the agent’s expected cumulative rewards: 

                                                 𝑉(𝑏0, 𝜋) = 𝐸[∑ 𝛾𝑡𝑟𝑡
𝑛
𝑡=0 ]    (2.6) 

                                                 𝑉(𝑏) = max𝑎∈𝐴 𝑄(𝑏, 𝑎)     (2.7) 

          𝑄(𝑏, 𝑎) = 𝑅(𝑏, 𝑎) + 𝛾 ∑ 𝑏(𝑠) ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑠′∈𝑆𝑠∈𝑆 ∑ 𝑂(𝑠′, 𝑎, 𝑧)𝑉(𝑏𝑎,𝑧)𝑧∈𝑍      (2.8) 

then choosing 

                                                 𝜋(𝑏) = argmax𝑎∈𝐴 𝑄(𝑏, 𝑎)     (2.9) 

To plan a policy 𝜋 satisfying Eq. 2.9, an agent must recursively solve Eqs. 2.7-

2.9.  This entails iteratively computing values of 𝑄(𝑏, 𝑎) for additional belief states 𝑏𝑎,𝑧 

that the agent might experience in the future to accurately calculate the long-term 

cumulative value from its initial belief state 𝑏0.  The tradeoff is that the farther into the 

future the agent plans, the more accurately it will account for future rewards and thus 

choose better actions, but deeper planning requires more time and the number of possible 

future belief states grows exponentially with planning depth 𝑛. 
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Due to the computational complexity of computing policies for large POMDPs, 

finding exact solutions can be quite difficult. Thus, approximate solutions are commonly 

employed, which estimate the exact policy the agent should perform.  Examples of 

popular approximate solutions include point-based methods (Shani, Pineau, & Kaplow, 

2013) that determine appropriate actions around select belief states the agent might 

encounter, such as PBVI (Pineau et. al, 2003), Perseus (Spaan and Vlassis, 2005), HSVI 

(Smith and Simmons, 2004), and SARSOP (Kurniawati et al., 2008).  An agent can build 

its policy maximizing expected rewards offline, allowing for more computational time 

and resources to build a larger policy, then follow the policy while operating online in the 

environment.  Alternatively, an agent can also use more recent methods to interleave 

planning and execution online to adapt to unforeseen situations, such as state-of-the-art 

online POMDP planning algorithms (Ross & Chaib-draa, 2007; Ross et al., 2008; Zhang 

& Chen, 2012).  We will provide background on online algorithms for POMDPs in 

Sections 3.2 and 4.2. 

2.2.3. Active Sensing POMDP 

Most often, the information variables the agent is trying to discern through 

sensing are represented by the hidden states 𝑆 in an active sensing POMDP (e.g., Guo, 

2003; Doshi and Roy, 2008).  Furthermore, factors internal to the agent or external in the 

environment that can influence the observations gathered by sensing are also represented 

in the state space, such as user behavior history (Williams and Young, 2007), 

bookkeeping variables for controlling reasoning (Spaan, Veiga, & Lima, 2010) and 

remembering history, as well as the state of stateful resources that can corrupt gathered 

information (Eck, 2010; Eck & Soh, 2011; 2013c).  The different sensing actions the 
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agent can perform to gather information are represented by the POMDP’s actions 𝐴, and 

the observations 𝑍 reflect information collected that help the agent refine its beliefs about 

which state is the correct one (i.e., what the true value of the information variables the 

agent intends to know through sensing).  How the agent chooses actions to achieve its 

goals (e.g., uncertainty reduction, balancing the tradeoff between sensing costs vs. task 

accomplishment) is controlled by the reward function 𝜌 used in the POMDP.  Most 

commonly, 𝜌 is chosen to be Eq. 2.4 and causes the agent to choose sensing actions that 

both (1) lead the agent to large future task-based rewards and (2) have low cost.  

However, other types of reward functions have recently been proposed that add some 

level of reflection to the agent’s sensing action selection, which we will discuss in more 

detail in Section 2.3.  We also propose a more principled way to add reflection to the 

active sensing POMDP using PBRS for POMDPs in Chapter 3.  

2.2.4. Applications of the Active Sensing POMDP 

One popular application of active sensing POMDPs is user preference elicitation, 

whereby the agent gathers information about a human user’s preference over a set of 

items (e.g., products, interest, goals).  Such interactions with humans are important for a 

range of environments, including recommendation systems (e.g., Adomavicius and 

Tuzhulin, 2005), computer supported collaborative learning systems (e.g., Khandaker et. 

al, 2011), and personal assistant agents (e.g., Eck & Soh, 2012b; Myers et. al, 2007; 

Yorke-Smith et. al, 2009).  For example, Boutilier (2002) considered an active sensing 

POMDP for determining user utility functions over a range of items.  Additionally, Doshi 

and Roy (2008) described an active sensing POMDP for first discovering a user’s current 

goal, then acting on the goal to provide intelligent user support.  Similarly, Williams and  
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Table 2.2: Related Active Sensing POMDP Research 

Reference Contributions 

(Boutilier, 2002) 
Boutilier studied the preference elicitation POMDP for modeling 

deliberatively gathering information about a human user’s preferences. 

(Guo, 2003) 

Guo cast the classification problem (identifying an unknown object) as 

a POMDP in order to deliberately choose how to gather information to 

result in accurate classification. 

(Sabbadin, Lang, & 

Ravoanjanahary, 

2007) 

Sabbadin, Lang, & Ravoanjanahary developed the epistemic MDP, a 

specific form of the active sensing POMDP (with no state transitions 

and only information gathering actions). 

(Williams & Young, 

2007) 

Williams & Young applied POMDPs to the problem of understanding 

human user speech in an automated telephone dialog system. 

(Doshi & Roy, 2008) 

Doshi & Roy developed improved solutions for solving the preference 

elicitation POMDP used to gather information during human-agent 

interactions. 

(Spaan, 2008;  

Spaan, Veiga, & Lima, 

2010) 

Spaan studied the use of POMDPs to control information gathering by a 

team of cooperating robotic and sensor agents in order to enable the 

team to appropriately respond to events in the local area. 

(Cohn et al., 2010; 

Cohn, Durfee, & 

Singh, 2011) 

Cohn et al. proposed expected myopic gain algorithms for choosing 

queries (i.e., information gathering actions) to ask human operators to 

learn how to act autonomously for the human operator in an MDP using 

Bayesian inverse reinforcement learning. 

(Eck, 2010;  

Eck & Soh, 2011; 

2013c) 

Eck & Soh developed the Observer Effect POMDP for controlling 

information gathering to appropriately use stateful resources and 

avoid/mitigate the Observer Effect during agent sensing. 

 

Young (2007) considered the problem of determining and responding to user goals during 

human-agent dialog management.  In these problems, the goal of the agent when 

choosing sensing actions is often to minimize costs from sensing and failed intelligent 

support (Doshi and Roy, 2008; Williams and Young, 2007), or maximizing the value of 

information collected during sensing with respect to the user’s task (Boutilier, 2002). 

Active sensing POMDPs have also been used for other applications of intelligent 

agent-based systems.  For example, Guo (2003) used an active sensing POMDP to 

control sensing actions used to classify the label of objects in the agent’s environment 

while minimizing sensing costs.  Moreover, Spaan (2008; et. al, 2010) used an active 

sensing POMDP to integrate observations from fixed position cameras and control the 

movements of a mobile robot to best observe a common area and respond to events and 
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users in need of assistance.  Also, Eck and Soh (2013c) used the Observer Effect POMDP 

to control sensing with stateful resources to maximize knowledge refinement and 

minimize distortions in observations from changing the state of resources during sensing. 

Furthermore, another model very similar to the active sensing POMDP has also 

been proposed in the literature.  Specifically, epistemic MDPs (Sabbadin, Lang, & 

Ravoanjanahary, 2007) model the environment similar to active sensing POMDPs but 

exclusively consider epistemic actions that only gather information from the environment 

but do not change the state of the environment.  Thus, epistemic MDPs are appropriate 

for active sensing applications where the primary goal of the agent is to discern the 

correct state of the environment without having to worry about affecting the environment 

during sensing.  To account for this difference from general active sensing, the state 

transition probabilities are removed from the standard POMDP model.  However, 

although this relaxation of the POMDP is more concise and has fewer terms in its 

calculations, Sabbadin, Lang, & Ravoanjanahary prove that the relaxation does not 

improve the model’s complexity except under certain strict conditions (e.g., observations 

are deterministic
5
).  Thus, an epistemic MDP can be represented as an active sensing 

POMDP without affecting the complexity of the solution by using deterministic state 

transitions (c.f., Section 2.2.1): 

                                                    𝑇(𝑠, 𝑎, 𝑠′) = { 1  if 𝑠 = 𝑠′
 0         else

        (2.10) 

In fact, actions have already been assumed to be purely epistemic in some applications of 

active sensing POMDPs (e.g., Guo, 2003). 

                                                           
5
 That is, taking the same action resulting in the same state always returns the same observation, but 

different states and actions can produce the same observation 
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Finally, similar research has also been proposed in the setting of Bayesian inverse 

reinforcement learning (with an MDP model of the environment) for deliberatively 

choosing information gathering actions.  Specifically, when an agent needs to learn how 

to act autonomously in lieu of a human operator according to the human's preferences, 

Cohn et al. (2010; Cohn, Durfee, & Singh, 2011) propose expected myopic gain 

algorithms for choosing queries to ask the human operator to myopically improve the 

agent's understanding of either (1) the unknown environment dynamics modeled by the 

transition function 𝑇 (Cohn et al., 2010), (2) the unknown reward function 𝑅 (Cohn et al., 

2010), or (3) the preferred action 𝑎 for a given state 𝑠 (Cohn, Durfee, & Singh, 2011). 

2.3. Reflective Information Gathering 

In this subsection, we next review some of the general history of reflective 

information gathering.  We summarize this history in Table 2.3. 

2.3.1. Reflection for Deliberative Information Gathering 

In some of the earliest work on reflection in information gathering, Zilberstein 

(1996; with Russell, 1993) studied how to allocate resources within information gathering 

in autonomous robots to support the robot’s tasks (e.g., movement to a location).  In 

particular, they considered the observation processing component of information 

gathering (i.e., transforming raw observations into useful information for reasoning, such 

as raw vision pixels into information about the agent’s surroundings).  The goal of this 

research was to control how much time was spent on processing information during 

information gathering to avoid consuming computational resources that could instead be 

used by the agent’s task-oriented reasoning.  Thus, the agent faced a tradeoff between 

time available for reasoning vs. the quality of information necessary for reasoning  
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Table 2.3: Related Reflective Information Gathering Research 

Reference Contributions 

(Zilberstein & 

Russell, 1993; 

Zilberstein, 1996) 

Zilberstein studied the use of performance profiles to reflect on the 

computational resources used to process gathered information in order to 

develop anytime algorithms to control information gathering. 

(Grass & Zilberstein, 

1997; 2000) 

Grass & Zilberstein calculated the value of information collected by 

sensing actions and reflectively weighed this benefit against sensing costs 

to control information gathering in VDIG. 

(Lesser et al., 2000) 

Lesser et al. evaluated the results of sensing (both goal directed and 

opportunistic, e.g., costs and uncertainty) in order to plan sensing actions 

in BIG. 

(Padhy et al., 2006) 

Padhy et al. developed an algorithm for sensing frequency control that 

reflectively compared observations to agent knowledge in order to know 

when to speed up sensing to understand the dynamic environment vs. 

when to slow down sensing to conserve limited energy resources in agent-

based wireless sensors. 

(Krause & Guestrin, 

2005; 2007; 2009; 

Krause et al., 2008) 

Krause et al. studied the Observation Selection Problem to optimize 

various objective functions (e.g., contamination detection, variance 

minimization) over gathered information according to cost constraints. 

(Mihaylova et al., 

2002) 

Mihaylova et al. proposed the use of hybrid reward functions for active 

sensing POMDPs that consider not only the task-oriented costs and 

benefits of actions, but also reflectively evaluate expected improvements 

in agent knowledge (i.e., its belief state). 

(Sabbadin, Lang, & 

Ravoanjanahary, 

2007) 

Sabbadin, Lang, & Ravoanjanahary proposed several reward functions for 

their epistemic MDP (a variant of the active sensing POMDP) that reflect 

on the benefits and costs of sensing actions in order to guide deliberative 

information gathering. 

(Araya-Lopez et al., 

2010) 

Araya-Lopez et al. introduced belief-based reward functions for active 

sensing POMDPs that exclusively reflect on the benefits of sensing 

actions with respect to agent knowledge.  They also prove several 

important theoretical properties of the use of such non-traditional reward 

functions within POMDPs (e.g., convexity for optimization in POMDP 

solvers). 

(requiring time spent instead on information gathering).  Using performance profiles to 

reflectively model the benefits of sensing per unit of time consumption, Zilberstein 

developed anytime algorithms to control sensing and optimize the overall behavior of the 

robot.  

Within the VDIG framework (c.f., Section 2.1), Grass & Zilberstein (1997, 2000) 

compared the agent’s a priori knowledge about the supported human user’s decision with 

the information available from sources across the internet in order to calculate the value 

of information with respect to the user’s decision (based on the expected utility to the 
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user of gaining such information), and chose to continue retrieving information for the 

user so long as the value of information collected continued to exceed the costs (e.g., time 

to retrieve the information, money paid to an information source on the internet) of 

gathering such information.  Similarly, BIG (Lesser et al., 2000) considered the results of 

sensing to determine how to deliberatively gather information, both (1) from the top 

down during its multilevel planning by evaluating important properties of its generated 

plans such as costs (e.g., time and money) and uncertainty, as well as (2) from the bottom 

up to discover opportunities for low cost sensing to meet its overall information gathering 

objectives.  Together, both VDIG and BIG represent domain-specific frameworks for 

reflecting on deliberative information gathering that could possibly be extended to more 

generic approaches for domain-independent, reflective, deliberative information 

gathering. 

Elsewhere in the intelligent agents literature, Padhy et al. (2006) created a 

reflective solution for sensing frequency control within the context of agent-based 

wireless sensor networks.  In an effort to minimize unnecessary limited energy 

consumption during environment monitoring, they developed an algorithm that compared 

recent observations to the agent’s knowledge about the environment to determine 

whether or not its observations (and the thus environment being monitored) were 

dynamically changing.  When the observations remained static, the agent’s knowledge 

was still up-to-date, so an agent reduced its sensing frequency to also reduce energy 

consumption and extend the lifetime of the sensor network.  On the other hand, when 

new observations were unexpected based on the agent’s knowledge, the agent increased 
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the sensing frequency to quickly adapt and build a more up-to-date model of the dynamic 

environment under observation. 

Beyond sensing only with intelligent agents, Krause et al. (2008; with Guestrin, 

2005; 2007; 2009) studied the Observation Selection Problem (OSP), which looked at 

how to gather information from a general AI perspective (with or without intelligent 

agents).  Specifically, the OSP cast information gathering as an optimization problem 

over at least one objective function reflectively measuring the goodness of information 

(e.g., likelihood of contamination detection by distributed sensors in a monitored space 

(Krause and Guestrin, 2009), minimizing variance of observed data (Krause et al., 2008), 

or optimizing navigational paths for robotic patrol (Singh et al., 2009)) while adhering to 

various cost constraints.  Based on properties of the objective function (e.g., 

submodularity), they developed greedy solutions that find approximately optimal 

solutions very quickly, in spite of the fact that the general OSP is NP-Complete, and thus 

computationally difficult to solve. 

2.3.2. Reflection for the Active Sensing POMDP 

With respect to the active sensing POMDP, Araya-Lopez et al. (2010) have 

recently advocated the use of a different type of reward function 𝜌 that reflects on the 

current knowledge of the agent (stored in its belief state 𝑏) in order to reflectively guide 

deliberative information gathering.   This type of function, called belief-based reward 

functions, breaks from tradition and ignores individual states (i.e., is not based on 

𝑅(𝑠, 𝑎)) and instead calculates a measure of quality over the entire belief state.  Thus, 

belief-based rewards reflect the quality of the agent’s sensing through its current 

knowledge refined from observations.  This type of reward function is useful as it directly 
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measures the immediate goal of sensing: to refine the agent’s knowledge about its 

environment.  Thus, the agent can directly optimize the quality and/or quantity of 

information gathered (with respect to its current beliefs) by optimizing a belief-based 

function. 

For example, if the primary goal of sensing is to reduce the uncertainty in the 

agent’s beliefs amongst a set of alternatives, the agent can use expected entropy in its 

belief state as a measure of uncertainty, then employ the negative of its entropy as its 

rewards to minimize uncertainty in its beliefs: 

                                          𝜌(𝑏, 𝑎) = −𝐻(𝑏) = ∑ 𝑏(𝑠) log|𝑆| 𝑏(𝑠)𝑠∈𝑆    (2.11) 

 

This example of a belief-based function is one of the most commonly proposed 

(e.g., Araya-Lopez et. al, 2010; Mihaylova et. al, 2002; Sabbadin, Lang, & 

Ravoanjanahary, 2007). Other belief-based reward functions that also reflect on agent 

knowledge in order to accomplish similar goals include maximizing the expected top 

belief (an approximation of certainty): 

                                           𝜌(𝑏, 𝑎) = max𝑠∈𝑆 𝑏(𝑠)    (2.12) 

when only the top belief is important, or maximizing expected information gain, such as 

through the popular Kullback-Leibler divergence measure (i.e., relative entropy) (Araya-

Lopez et. al, 2010; Mihaylova et. al, 2002): 

                                   𝜌(𝑏, 𝑎) = 𝐸[𝐾𝐿(𝑏, 𝑏𝑎)] = 𝐸 [∑ 𝑏(𝑠) log|𝑆|
𝑏(𝑠)

𝑏𝑎(𝑠)𝑠∈𝑆 ]   (2.13) 

Furthermore, hybrid reward functions represent a way to combine both state- 

and belief-based rewards in a coherent, principled manner in order to achieve action 

selection that is both task-oriented and reflective about information gathering. As its 

name implies, this type of function considers both of the other types simultaneously, 
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often in the form of a weighted function between the alternative reward types (Araya-

Lopez et. al, 2010; Mihaylova et. al, 2002; Eck & Soh, 2012c).  Hybrid reward functions 

are potentially useful because they simultaneously consider both the cost-aware 

perspective of state-based functions and the sensing benefit-aware perspective of belief-

based functions to potentially produce very efficient and effective sensing.  For example, 

an agent might use a combination of expected state-based rewards 𝑅(𝑠, 𝑎) (Eq. 2.5) and 

the negative entropy function (Eq. 2.11): 

                                   𝜌(𝑏, 𝑎) = 𝑤 ∑ 𝑏(𝑠)𝑅(𝑠, 𝑎) − (1 − 𝑤)𝑠∈𝑆 𝐻(𝑏)   (2.14) 

to simultaneously consider both the costs and immediate belief improvement benefits of 

sensing, along with the benefits and costs of stopping sensing to perform its task.  Here, 

𝑤 represents a weight balancing the importance of the two types of rewards.  This weight 

can either be fixed a priori or adjusted over time in response to both changing 

environment conditions and/or the performance of the agent. 

Furthermore, other types of hybrid functions have also been proposed.  For 

example, Sabbadin, Lang, & Ravoanjanahary (2007) proposed (as one of many reward 

functions considering beliefs) including costs incurred for all non-terminating sensing 

actions used to gather information, then rewarding the agent based on a belief-based 

reward function only for the final step of its policies (i.e., when the agent stops sensing).  

This is similar to state-based functions in that sensing actions incur costs and positive 

rewards are received after sensing (to guide the agent towards terminal conditions for 

sensing, e.g., task accomplishment).  However, the final rewards depend on the value of 

the agent’s beliefs rather than any particular state the agent believes is correct. 
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Table 2.4: Related Multiagent Information Sharing Research 

Reference Contributions 

(Glinton, Scerri, & 

Sycara, 2009; 2010; 

2011) 

Glinton, Scerri, & Sycara defined the Large Team Information 

Sharing (LTIS) problem for observing static environment 

phenomena and: 

 studied emergent information flow behavior within the team 

when various problem parameters were changed (e.g., belief 

update weighting, degree network connectivity) 

 developed analytical models predicting and describing 

emergent information flow  

 produced a distributed algorithm (DACOR) for optimizing 

information flow to reach consistent, accurate beliefs 

through the team of agents, and 

 studied the effect of malicious or faulty agents injecting bad 

information within the networked team 

(Pryymak, Rogers, & 

Jennings, 2012) 

Pryymak, Rogers, & Jennings developed another distributed 

algorithm (AAT) for the LTIS problem that achieved similar good 

performance to DACOR without requiring any more network 

communication than just shared information (i.e., no coordination 

messages) 

(An et al., 2011) 
An et al. studied agent-powered distributed resource allocation for 

sensing networks applied to environmental weather monitoring. 

(Stein, Williamson, & 

Jennings, 2012) 

Stein, Williamson, & Jennings studied information sharing with 

limited communication resources and developed an algorithm 

controlling who an agent should communicate with, what 

information should be shared, and how communication resources 

should be divided between agents. 

2.4. Multiagent Information Gathering with Limited Sensors 

Next, we introduce recent related work from the multiagent systems literature 

describing multiagent sensing when the sensing capabilities of agents are limited (related 

to our Information Sharing Problem, c.f., Section 1.3).  We summarize this related work 

in Table 2.4. 

Most relevant to our own research presented in Chapter 5, Glinton, Scerri, & 

Sycara (2009; 2010; 2011) introduced and studied the Large Team Information Sharing 

(LTIS) problem.  In LTIS, a very large team (e.g., consisting of more than 1000 agents) 

work together to form consistent, accurate beliefs about some phenomena in the 

environment.  Only a very small number of agents (relative to the size of the team) posses 
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sensors that can directly observe each phenomenon of interest, whereas all other agents 

must rely on shared information from sensor agents to gather information about the 

phenomenon.  Glinton, Scerri, & Sycara (2009) first studied the emergent dynamics of 

information flow and belief updates throughout such a team observing static phenomena 

based on different parameters of the network (e.g., belief update weighting representing 

confidence in neighbors’ beliefs, degree network connectivity representing 

communication pathways and size of sub-teams).  Afterwards, they (2010) developed 

analytic models formalizing the behavior of information flow in such teams, as well as a 

distributed solution for optimizing the team’s convergence to consistent, accurate beliefs.  

Later, Pryymak, Rogers, & Jennings (2012) produced another distributed solution that 

improved upon the work of Glinton, Scerri, & Sycara by not requiring additional network 

traffic to reach good beliefs throughout the team of agents.  Finally, Glinton, Scerri, & 

Sycara (2011) also studied the robustness of information flow when malicious or faulty 

agents inject bad information into an LTIS team of agents.  For more details describing 

prior work on LTIS, please consult Section 5.2 later in this dissertation. 

Beyond LTIS, other recent work has also considered different aspects of 

information sharing between cooperative agents when sensing is limited.  For example, 

An et al. (2011) studied negotiation methods for developing plans allocating limited 

resources between agents responsible for cooperatively monitoring the environment.  

This research was applied to weather monitoring in a real-world radar system.  

Additionally, Stein, Williamson, & Jennings (2012) studied information sharing between 

cooperating agents consuming limited shared communications resources.  In particular, 

they developed a distributed approach for determining (1) who amongst the team each  
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Figure 2.1: Comparison to Prior Reflective, Deliberative Information Gathering 

Research within the Analysis Problem 

agent should communicate with, (2) what information should be transmitted by each 

agent to avoid overloading shared communication resources, as well as (3) how limited 

communication channels should be distributed across the team of agents. 

2.5. Comparison of our Research to Prior Work 

We conclude this related work chapter by placing our dissertation research 

studying reflective, deliberative agent-based information gathering within the context of 

the state-of-the-art in the intelligent agents and multiagent systems literature described 

previously in this chapter.  

First, our research studying the Analysis Problem extends prior research on 

reflective, deliberative information gathering in the following manner, summarized in 

Figure 2.1.  On the one hand, our PBRS for POMDPs and DHS + LSEM solutions 

represent domain-independent solutions that can applied to a wide variety of intelligent 
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agent applications and domains.  This is an improvement over initial reflective solutions 

developed for deliberative information gathering (e.g., Zilberstein & Russell, 1993; 

Zilberstein, 1996; Grass & Zilberstein, 1997; 2000; Lesser et al., 2000).  In particular, our 

DHS + LSEM solution works off the shelf to add reflection about sensing benefits to any 

problem using POMDPs for planning, whereas our PBRS for POMDPs solution enables 

both domain-independent and domain-dependent measures of action benefits and costs 

(including towards sensing and knowledge refinement) to be considered during reflective 

metareasoning to improve overall agent performance. 

On the other hand, our two solutions also provide stronger theoretical guarantees 

with respect to improving agent reasoning and actuation (through reflective information 

gathering) than the state-of-the-art.  Whereas prior research has primarily focused on 

theoretically understanding (1) problem complexity (e.g., Krause & Guestrin, 2007; 

Sabbadin, Long, and Ravoanjanahary, 2007), or (2) applicability for use within prior 

deliberative information gathering techniques (e.g., Araya-Lopez et al., 2010), our two 

solutions add additional guarantees that (1) an approximately optimal solution can be 

found in finite time (Eck & Soh, 2014b) (c.f., Section 4.4.4), (2) metareasoning can best 

benefit the agent when adequate sensing is most difficult (Eck et al., 2015) (c.f., Section 

3.3.2), and (3) including metareasoning doesn’t change the objective function being 

optimized by the agent and thus should improve the overall performance of the agent 

(Eck et al., 2015) (c.f., Section 3.3.2).  This is especially important because we have 

previously demonstrated (Eck & Soh, 2012c, 2012d) that the aforementioned belief-based 

and hybrid reward functions (Eqs. 2.11-2.14) (Araya-Lopez et al., 2010; Mihaylova et  
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Figure 2.2: Comparison to Prior Multiagent Information Gathering 

Research within the Information Sharing Problem 

al., 2002; Sabbadin, Long, & Ravoanjanahary, 2007) used to provide reflective 

metareasoning about sensing to the popular active sensing POMDP can lead to 

complicated (and not necessarily beneficial) relationships between reflective information 

gathering and overall agent performance, even in two relatively simple active sensing 

POMDPs (with very small state, action, and observation spaces). 

Second, our Information Sharing Problem research extends prior research on 

multiagent reflective, deliberative information gathering in the following manner, 

summarized in Figure 2.2.  First, our research on the flow of shared information in LTIS 

(c.f., Chapter 5) extends prior research studying this problem to consider non-stationary 

environments that change over time, and thus require more complicated sensing control 

to not only reach consistent, accurate beliefs about environment phenomena of interest to 

the team’s reasoning, but also maintain such beliefs as the phenomena change over time.   

Additionally, our other research on the Information Sharing Problem studies how to share 

information in ad hoc environments, where agents have no prior knowledge of their 

peers’ capabilities or willingness to cooperate. Thus, we study more complicated 

environments, such as those agents are likely to experience in real-world applications.  

Finally, our additional research studying the Environment Impact Problem 

extends prior research on reflective, deliberative information gathering in the following  
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Figure 2.3: Comparison to Prior Research on Resource Usage during Information 

Gathering within the Environment Impact Problem 

manner, summarized in Figure 2.3.   In particular, although prior research has studied the 

use of limited resources during sensing, such as computational resources (Zilberstein & 

Russell, 1993; Zilberstein, 1996) or energy resources (Padhy et al., 2006), little research 

has focused on how the use of such resources can change the state of the environment and 

thus impact the observations collected by the agent during information gathering.  In our 

prior work studying the Observer Effect within the Environment Impact Problem (Eck, 

2010; Eck & Soh, 2011; 2013c), we began studying such impacts on the quality or 

quantity of information gathered by agent sensing when using stateful resources whose 

behavior change as they are used by agents for sensing.  However, our own prior work 

only studied environment impacts in simulation.  As part of our future work (c.f., Chapter 

7), we intend to study the Observer Effect in a real-world application of reflective, 

deliberative information gathering – an intelligent agent for producing adaptive 

surveys/interviews for collecting information from human respondents. 
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CHAPTER 3   POTENTIAL-BASED REWARD SHAPING FOR 

POMDPS 
 

In this chapter, we present our first solution to the Analysis Problem (c.f., Section 

1.3) within the context of POMDPs, a popular approach to deliberative information 

gathering (c.f., Section 2.2.2).  Taking inspiration from the related field of reinforcement 

learning (RL), our solution is to shape the agent’s reward function with information 

reflecting the quality of its sensing (e.g., knowledge refinement) to guide the agent 

towards actions that both best improve its knowledge (represented by belief states), as 

well as allow it to achieve its tasks with high reward. 

However, this approach also solves a greater general problem in the POMDP 

literature: creating plans to achieve high, cumulative rewards with only short, finite 

horizons (i.e., planning steps 𝑛, Eq. 2.6). The same technique we use to imbed reflection 

on agent knowledge refined through sensing (potential functions from PBRS) can also be 

used to provide hints of where the agent might find high future rewards beyond its 

planning horizon, and thus achieve greater cumulative rewards over time (reflection on 

sensing outcomes being one such type of hint).  As such, this chapter is written to address 

the greater finite horizon problem, and was recently published in the Journal of 

Autonomous Agents and Multiagent Systems (Eck et al., 2015).  We theoretically prove 

several important properties and benefits of using PBRS for online POMDP planning and 

empirically demonstrate these results in a range of classic benchmark POMDP planning 

problems.  

This research is joint work with our collaborators Dr. Sam Devlin and Dr. Daniel 

Kudenko of the University of York in the United Kingdom. 
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3.1. Introduction 

Partially observable Markov decision processes (POMDPs) (Kaelbling, Littman, 

& Cassandra, 1998) have become a very popular approach to agent reasoning and 

planning, such as for robotics (e.g., Mihaylova et al., 2002; Spaan, Veiga, & Lima, 2010) 

and human-agent interactions (e.g., Boutilier, 2002; Doshi & Roy, 2008; Williams & 

Young, 2007).  POMDPs explicitly model complex environment dynamics, such as 

partial observability of environment states revealed through actions, as well as changes to 

environment state resulting from actions.  Using such information, agents can (1) 

discover the true environment state hidden by partial observability in order to reduce the 

uncertainty in its beliefs and make more informed decisions, and (2) plan action 

sequences that maximize expected rewards given its uncertain beliefs.  

Reducing the time spent (i.e., the computational complexity) on planning with 

POMDPs has been a topic of much research in the literature (e.g., Kurniawati, Hsu, & 

Lee, 2008; Ong et al., 2010; Pineau, Gordon, & Thrun, 2003; Ross & Chaib-draa, 2007; 

Silver & Veness, 2010; Smith & Simmons, 2004; Somani et al., 2013; Spaan & Vlassis, 

2005; Zhang & Chen, 2012).  This is especially important for online POMDP planning 

(Ross et al., 2008), where an agent interleaves planning and execution as it operates in 

the environment and must therefore plan quickly due to real-time constraints.  Ultimately, 

the agent’s goal when planning is to calculate a good estimate of the cumulative, future 

rewards from its current situation dependent on different actions it could take in order to 

choose how to behave in the environment.  In most problems, this requires being able to 

plan many steps in advance in order to form good estimations of future rewards.  

Unfortunately, the complexity of optimal planning is exponential in the planning horizon 
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(i.e., the number of steps the agent looks ahead during planning).  Moreover, the 

complexity is also polynomial in the size of the state space, which is often quite large 

(necessary to adequately capture and reflect the nuances of real-world environments).  

Therefore, planning far enough in advance across all possible future situations is 

prohibitively expensive (due to time constraints), and thus agents are commonly 

restricted to forming approximately best plans, rather than acting optimally, which 

reduces their ability to maximize long-term rewards and achieve correct, goal-directed 

behavior. 

In order to provide the most useful cumulative, future reward estimations, many 

of the state-of-the-art approaches to online planning sacrifice the breadth of planning in 

order to enable the agent to plan farther in advance for certain situations, thereby 

forming better estimations of the rewards (and thus better understanding how to act) in 

those situations.  The success of this type of approach depends on the agent’s ability to 

select (in advance) the correct scenarios it will indeed face.  Two common such 

approaches to planning include (1) expanding plans selectively along attractive belief 

states (according to some heuristic function) using heuristic search (e.g., AEMS2 (Ross 

& Chaib-draa, 2007)), or (2) sparse random sampling of situations biased towards highly 

probable state/action/observation sequences and high estimated rewards using Monte 

Carlo search techniques (e.g., DESPOT (Somani et al., 2013)).  So long as the heuristic 

chosen in heuristic search methods or the sampling performed in Monte Carlo methods 

expands plans along the correct situations towards high future rewards and goal 

accomplishment, these approaches have demonstrated an ability to form plans equally as 

good as the state-of-the-art offline planners where time constraints are more relaxed and 
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agents can afford greater breadth and depth of planning (Ross et al., 2008; Silver & 

Veness, 2010; Somani et al., 2013; Zhang & Chen, 2012). 

However, it would be ideal for a POMDP planning algorithm to achieve accurate 

cumulative, future reward estimations without having to sacrifice the breadth of planning.  

Indeed, sacrificing breadth can be inherently detrimental to the agent’s behavior in 

several ways.  For example, depth-focused planning algorithms can cause an agent to fail 

to adequately consider scenarios it might actually encounter in the near future when 

executing the plan (i.e., if they are unattractive according to the chosen heuristic in 

heuristic search algorithms or if they are not quite as likely as other scenarios in Monte 

Carlo methods), and thus the agent could end up in a position where it does not know 

what to do in order to adequately achieve its goals.  In complex, real-world applications 

of intelligent agents and multiagent systems, such a predicament could even pose 

imminent danger to the agent (e.g., a search and rescue robot exploring a damaged 

building in a section about to collapse) or affect the quality of the system (e.g., increased 

human user frustration caused by improper interactions from a mixed-initiative software 

agent).  Additionally, in problems requiring long action sequences to achieve large 

rewards (e.g., highly uncertain environments requiring large quantities of information 

gathering), even depth-focused planning algorithms might fail to adequately plan far 

enough down to discover large future rewards and thus underestimate the value of the 

best actions, leaving it potentially confused on how best to act, or even overvalue 

suboptimal actions (that achieve greater intermediate rewards but lower cumulative 

rewards in the long run).  This, too, can cause the agent to reach undesirable situations 

that make it difficult for the agent to achieve its goals in the long run. 
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Overall, it would be advantageous for an agent if it could implicitly estimate 

cumulative, future rewards without requiring time-consuming, explicit, depth-based 

calculations so that it can achieve the best of both worlds: allowing time for full breadth 

of planning—to avoid the potential pitfalls described above—and also creating better 

estimations of cumulative rewards over the long term.    This should produce a planner 

that is both safer to use in complex environments and still achieves high rewards over 

time and ultimately goal achievement. In this chapter, we explore how to perform 

implicit future reward estimation within full breadth planning. 

In particular we consider a popular technique for implicitly guiding agents 

towards large future rewards from the related field of reinforcement learning called 

potential-based reward shaping (PBRS) (Asmuth, Littman, & Zinkov, 2008; Devlin & 

Kudenko, 2011; 2012; Ng, Harada, & Russell, 1999) and apply this technique to online 

POMDP planning.  In this context, PBRS uses additional information about the agent’s 

current situation (represented by belief states in POMDPs) measured by potential 

functions reflecting the potential of earning large future rewards from any particular 

situation in order to shape the rewards maximized by the agent.  That is, this additional 

information guides the agent to optimistically take actions leading to situations (i.e., 

belief states) likely to earn large future rewards beyond its planning horizon, thereby 

enjoying the benefits of deeper planning without suffering from the would-be 

computational costs. 

Although PBRS has previously been applied to planning in less complex fully 

observable Markov decision processes (MDPs) (Sorg, Singh, & Lewis, 2011) and can be 
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seen as an extension of leaf evaluation heuristics
6
 (e.g., Ross et al., 2008; Sorg, Singh, & 

Lewis, 2011) to anytime planning, this first application of PBRS to online POMDP 

planning provides additional insights and benefits previously unreported.  Specifically, 

we discover and provide several novel contributions to both the PBRS and online 

POMDP planning literature: 

1. A novel characterization of different categories of potential functions that provide 

different indications of which situations are favorable to the agent (beyond its 

available planning horizon) for earning greater quantities of cumulative, future 

rewards, including both domain-specific and domain-independent expertise.  

Previous research has not distinguished between different types of potential 

functions, and this categorization helps us understand what types of potential 

functions might be useful in different problems. 

2. Two novel types of potential functions unique to POMDPs exploiting different 

properties of belief states: (a) the agent’s knowledge about the environment 

represented as a probability distribution, and (b) a sufficient statistic representing 

the history of interactions by the agent with its environment.  Such types capture 

and exploit information not considered previously in the use of PBRS or leaf 

evaluation heuristics for planning, enable agent metareasoning with POMDP 

planning, and prove to be very useful for earning large rewards by agents in an 

empirical study. 

                                                           
6
 Sorg, Singh, & Lewis (2011) also propose applying their optimal reward framework to MDPs, which is 

slightly different from PBRS in that it allows path-dependent reward modifications (as opposed to shaping 

only values at leaf and initial situations in PBRS, c.f., Section 3.2).  However, they note that in full breadth 

planning (as considered in this chapter), optimal rewards are equivalent to leaf heuristics, and thus also to 

PBRS.  Therefore, for the remainder of the chapter, we only refer to leaf evaluation heuristics, but the same 

discussions apply to optimal rewards, as well. 
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3. Several theoretical results describing the benefits of using PBRS during online 

POMDP planning, including (a) for any finite horizon of planning depth, PBRS 

can result in different plans found than the approximately best plan found without 

PBRS, making it possible to achieve plans closer to the actions within the (infinite 

horizon) optimal policy when using a potential function that is a good indicator of 

future rewards, (b) PBRS has the greatest ability to produce plans that are better 

in the long term when using the shortest horizons, making it a good choice for 

online planning with real-time constraints, (c) even though PBRS modifies the 

reward function maximized by the agent, the (infinite horizon) optimal policy 

under PBRS is the same as the (infinite horizon) optimal policy to the original 

reward function, so using PBRS still targets plans that optimize the agent’s goals 

and task accomplishment (i.e., using PBRS is still working towards the same 

objective, even if it finds different, and hopefully better, policies when using 

finite horizon planning), and (d) so long as the potential function is convex, the 

shaped reward calculations remain convex and can thus be solved by a wide range 

of popular POMDP solvers. 

4. A comprehensive experimental study investigating the empirical performance of 

PBRS for online POMDP planning using 20 different potential functions across 

multiple benchmark problems with different properties, as well as an 

identification of the benefits and weaknesses of PBRS when compared against 

state-of-the-art heuristic search and Monte Carlo planning approaches commonly 

used for online POMDP planning.  In particular, we discover that combinations of 

potential functions including both (a) domain-specific information (as done 



www.manaraa.com

 
 

49 

elsewhere in the PBRS literature) and (b) forms of metareasoning about agent 

knowledge and/or histories of agent interactions with the environment (both novel 

for POMDPs and proposed in this research) results in improved full breadth 

planning by implicitly estimating cumulative, future rewards, and performs very 

competitively with (and often exceeding) depth-focused state-of-the-art online 

POMDP planning algorithms. 

Overall, these contributions demonstrate the usefulness of employing PBRS to 

improve online POMDP planning.  PBRS enables full breadth planning (for more 

comprehensive planning by considering all nearby reachable situations from the current 

one) to achieve greater cumulative reward estimation implicitly, as other approaches 

intend to do explicitly at the cost of needing to sacrifice breadth of coverage due to 

limited time constraints on planning.  These contributions also provide additional insights 

into the types of information measurable by potential functions that can be useful to 

improve agent reward accumulation, which could be used to improve the use of PBRS in 

other settings (beyond online POMDP planning, e.g., partially observable reinforcement 

learning).  

The rest of this chapter is organized as follows.  Section 3.2 provides important 

background for understanding our approach, including a discussion of POMDPs, online 

planning, and PBRS as originally formulated for RL. Section 3.3 introduces our approach 

and contains proofs for several important theoretical properties of the policies found 

during online POMDP planning with PBRS.  Section 3.4 describes the experimental 

setup used to empirically evaluate the performance of online POMDP planning with 

PBRS on several benchmark POMDP problems, followed by the analysis of our results 
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and a discussion of the broader implications of this work in Section 3.5.  Section 3.6 

concludes with a summary of our approach and findings, as well as additional 

suggestions for future work that we intend to explore. 

3.2. Background 

3.2.1. Online POMDP Planning 

Online planning is one approach to policy construction.  In online planning, an 

agent iteratively (1) plans a policy 𝜋 from its current belief state 𝑏 while operating in the 

environment, then (2) executes that policy for a while before returning to (1) and 

repeating the process.   By interleaving planning and execution, the agent focuses its 

planning efforts on beliefs it actually encounters in the environment, allowing it to adapt 

to unlikely and unexpected situations, as well as not waste valuable resources planning 

for many unencountered beliefs.  These properties are especially beneficial in real-world 

applications where agents operate in real-time and cannot estimate in advance all possible 

encountered beliefs (e.g., robotic exploration). 

Because the agent interleaves planning and execution while operating in the 

environment, online planning is usually restricted to limited amounts of time it can afford 

for planning. This requirement of quick planning requires the agent to plan for a limited 

number of steps ahead (i.e., limited depth) and/or a limited number of possible belief 

states imminently reachable from the current belief state (i.e., limited breadth).  

Among online planning approaches, several different methods have been 

proposed that deal with time constraints during planning in different ways in order to 

produce the best estimates of cumulative, future rewards (c.f., Ross et al. (2008) for a 

recent survey of online planning methods).  Generally, these approaches represent the 
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agent’s policy as a tree with belief states represented by nodes, whereas actions and 

observations are represented by branches between belief states (where an action and 

observation from one belief state produces another belief state, as in Eq. 2.4).  As the tree 

is expanded, the algorithms use the new actions and belief states added to the tree to 

update the estimated cumulative rewards from the agent’s current belief state (using Eqs. 

2.6-2.8).  Thus, planning has two parts: (1) constructing the tree by expanding nodes as 

time permits, and (2) evaluating the value of action sequences within a tree according the 

agent’s reward function to form the policy of actions to take.  Different existing 

algorithms for online POMDP planning primarily differ in how they choose to expand the 

tree to best estimate cumulative rewards within the limited amount of time allotted for 

online planning.  

Two of the most popular categories of online planning algorithms include 

heuristic search methods and Monte Carlo search methods.  First, heuristic search 

methods (e.g., AEMS2 (Ross & Chaib-draa, 2007), FHHOP (Zhang & Chen, 2012)) 

focus planning on the most attractive beliefs.  Iteratively, heuristic search methods 

choose to expand the plan from the leaf belief state in the policy tree that maximizes 

some heuristic function.  This heuristic function measures how informative each leaf 

belief state is towards improving the quality of the plan.  For example, state-of-the-art 

heuristic search algorithms (e.g., AEMS2 (Ross & Chaib-draa, 2007)) rely on heuristics 

measuring both (1) the error bounds on the value function 𝑉 as leaf evaluation heuristics 

(i.e., additional upper and lower bounds on future rewards added to the value of a belief 

state), reflecting the uncertainty introduced by the belief state into the agent’s overall 
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plan, as well as (2) whether or not the belief state is reached by actions that optimistically 

maximize the upper bound on future rewards.   

Second, Monte Carlo search methods (e.g., Rollout (Bertsekas & Castanon, 

1999), POMCP (Silver & Veness, 2010), DESPOT (Somani et al., 2013)), also called 

Monte Carlo Tree Search (MCTS) when used with tree-based policy representations, 

perform sparse random sampling of future belief states to estimate cumulative, future 

rewards.  In particular, these methods expand plans by sampling situations that have (1) 

high probabilities in the state transition and observation functions to focus planning on 

the most likely sequences of agent beliefs, and (2) earn greater rewards under the current 

reward estimations.   

Both heuristic search methods and Monte Carlo search methods commonly result 

in depth-focused planning since (1) heuristics like AEMS2 favor expanding belief states 

along optimistically optimal sequences of actions (determined by the upper bound on 

future rewards), and (2) biased sparse random sampling prefers expanding sequences of 

belief states that have the greatest likelihood of occurrence.  As discussed in Section 3.1, 

this focus on depth is advantageous because it allows agents to form more accurate 

estimations of the cumulative, future rewards along the deep expansion paths by 

recalculating Eqs. 2.6-2.8 repeatedly for the parent belief states along these paths.  That 

is, it suffers less from over- and under-estimation of future rewards on chosen 

action/belief sequences by explicitly searching many steps in advance.  So long as the 

heuristic function or biased random sampling identifies the correct belief states for which 

to plan between the agent’s current belief state and its goal, then the heuristic search or 

Monte Carlo search methods should work quite well in practice, as indeed shown through 
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several experimental studies (e.g., Ross et al., 2008; Silver & Veness, 2010; Somani et 

al., 2013; Zhang & Chen, 2012). 

However, increasing the depth of planning along select paths in the policy tree 

requires the agent to sacrifice the breadth of planning within the tree due to limited time 

constraints.  Specifically, heuristic search methods neglect belief states with high (but not 

quite maximum) heuristic value, and random sampling in Monte Carlo search methods 

avoids less likely but certainly possible belief state sequences.  In many situations, 

especially in complex environments, planning for these other belief states could be very 

beneficial to improving the overall quality of the agent’s plan and its estimation of 

cumulative, future rewards.  That is, sacrificing breadth can also lead to suboptimal 

policies within the (deeper) finite horizon used for depth-focused planning due to over- or 

underestimation of the value of the computed policy since the agent fails to explore all 

possible belief state transitions within the policy tree, possibly missing unexpected high 

rewards that follow from actions and belief state transitions that are myopically 

suboptimal and not chosen for expansion.  As discussed in Section 3.1, sacrificing the 

breadth of planning can also cause the agent to reach dangerous or undesirable situations 

with no forethought on what to do or how to reach a better situation in order to eventually 

achieve its goals. 

Additionally, heuristic search methods (and some Monte Carlo search methods) 

generally require the agent to have computed rough policies offline before using online 

planning in order to calculate the upper and lower bounds on the value of actions in belief 

states that are used to guide planning.  However, if the agent is placed in a complex 

environment (e.g., robotic exploration) where the agent has high uncertainty in what 
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situations it will face or if the size of the POMDP is very large, appropriate pre-planning 

might be prohibitively expensive. 

In Section 3.3, we explore an approach to online POMDP planning that does not 

require sacrificing breadth of coverage during planning, yet improves the ultimate actions 

chosen from planning by enabling the agent to implicitly look beyond a limited planning 

horizon when valuing the actions and belief state transitions within the planning horizon, 

enabling better long-term reward maximization.  Our approach is most similar to 

heuristic search methods for online planning in that it evaluates the quality of belief states 

for more than just immediate rewards.  However, our approach does not limit expanding 

plans only along selected belief states with high heuristic value.  Instead, the approach 

modifies the rewards considered at each belief state to bias the agent to place higher 

value during short, finite horizon planning on policies with greater long term cumulative 

rewards (even if such policies are otherwise suboptimal within the short, finite horizon).  

Furthermore, our approach does not require information from precomputed plans, 

although it can exploit such information if available.  We will further describe in more 

detail in Section 3.3.1 the fundamental differences between our approach and those 

described previously in this section. 

3.2.2. Potential-Based Reward Shaping 

Potential-based reward shaping (PBRS) was originally proposed by Ng et al. 

(1999) as a method to provide hints on how to achieve greater long-term rewards as the 

agent learns the reward function in RL. PBRS addresses one important challenge within 

RL commonly known as the exploration-exploitation problem: determining how to best 

improve the agent’s learned knowledge whilst simultaneously maximizing long-term 
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reward (Eq. 2.1).  PBRS handles this challenge by embedding a priori information about 

the potential of states to provide the agent with more valuable rewards.  Using this 

information, the agent is encouraged to choose actions that explore states of high 

potential in order to learn about these states and hopefully earn greater future rewards 

while operating in the environment. 

Within PBRS, a potential function 𝜙(𝑠) defined over states encodes or measures 

such a priori information.  For example, in a path finding application (e.g., Asmuth, 

Littman, & Zinkov, 2008), a good potential function might evaluate the inverse of the 

agent’s distance from the goal location, which returns greater values for states (i.e., agent 

locations in the maze) closer to where the agent earns large rewards (the goal location). 

In order to guide the agent during RL, PBRS shapes the rewards considered 

during action selection in Eq. 2.1 by adding an additional amount determined by the 

potential function.  Specifically, PBRS considers the following reward: 

                                                𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎) + 𝐹(𝑠𝑡, 𝑎, 𝑠𝑡+1)    (3.1) 

                           where      𝐹(𝑠𝑡, 𝑎, 𝑠𝑡+1) = 𝛾𝛷(𝑠𝑡+1) − 𝜙(𝑠𝑡)   (3.2) 

Here, Eq. 3.2 represents the difference in potential future rewards due to moving 

from state 𝑠𝑡 to 𝑠𝑡+1. Shaping 𝑟𝑡 by adding this value provides additional motivation to 

the agent to choose actions that increase the potential of earning future rewards.  

Therefore, by maximizing this representation of 𝑟𝑡 in Eq. 2.1, the agent targets actions 

that improve its learning and are more likely to lead to larger rewards.  Once the rewards 

are learned for those high potential states, the agent can then exploit its learned 

knowledge to maximize long-term rewards.  

Furthermore, it can be shown (see the proof for Theorem 3.4 for similar details) 

that when planning over an infinite horizon, the same policy optimizes rewards with and 
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without PBRS (Asmuth, Littman, & Zinkov, 2008; Ng et al., 1999).  Therefore, using 

PBRS does not change the (infinite horizon) optimal policy and, due to targeted 

exploration, results in faster learning convergence to the optimal policy and higher 

cumulative unshaped rewards than only using the original reward function 𝑅.  This 

equivalence property of the (infinite horizon) optimal policy is one of the primary 

advantages of using PBRS to guide exploration in RL (Asmuth, Littman, & Zinkov, 

2008; Devlin & Kudenko, 2011; 2012; Ng et al., 1999).  

Extending beyond RL, PBRS has also been used to improve planning in fully 

observable domains using a Markov decision process (MDP) (e.g., Sorg, Singh, & Lewis, 

2011), which has the same mathematical framework as RL but knows the model 

parameters a priori.  In the context of MDPs, PBRS uses a potential function to guide the 

agent to favor policies found during planning that are likely to lead to large future 

rewards (equivalent to the use of leaf evaluation heuristics (Sorg, Singh, & Lewis, 

2011)).  This prior work inspired our own extension of PBRS (which is the first to 

formally consider partial observability) to POMDPs, where guiding planning towards 

future rewards is especially important when working with limited planning time due to 

the increased complexity caused by handling partial observability, as motivated 

previously. 

Of note, POMDPs can be viewed as a special case of the MDP called a 

(continuous state) belief MDP (Kaelbling, Littman, & Cassandra, 1998), where the state 

of the MDP represents the current belief state and the state transition function 

encompasses all the necessary details of belief state changes (e.g., factoring in 

observation probabilities).  Thus, upon first glance, using PBRS for planning with 
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POMDPs is a relatively straightforward extension of the prior research employing this 

technique with MDPs.  However, the novelty of the research presented here is not in the 

extension itself (for which we supply the necessary details), but in realizations about the 

characteristics of potential functions and the discovery of different types of information 

useful to evaluate the value of plans in POMDPs for finding better approximations of the 

(infinite horizon) optimal policy when planning with only small, finite horizons.  In 

previous PBRS research, only a single type of potential function has been defined: 

potentials over individual states (Eqs. 3.1-3.2, c.f., Type 1 in Section 3.3.1), whereas in 

leaf evaluation heuristics research, another type (c.f., Type 4 in Section 3.3.1) is 

commonly used.  However, the richness of belief states as probability distributions 

representing both agent knowledge about the environment, as well as histories of agent 

interactions with the environment, open up additional exploitable opportunities available 

when using PBRS with more complex POMDPs, rather than simpler, fully observable 

MDPs.  In particular, we identify two novel types of information measurable by potential 

functions in POMDPs not achievable in MDPs or fully observable reinforcement 

learning, including opportunities for metareasoning through reflecting upon the quality of 

agent knowledge or the history of the agent’s actions in order to guide improved action 

selection.  Indeed, we rely on a feature of POMDPs that make planning more complicated 

in general (handling partial observability through probabilistic beliefs) and turn it instead 

into an advantage in designing good potential functions that improve planning.  

Ultimately, both the identification of the existence of different types of available potential 

functions, and the consideration of the types of information used in our novel potential 
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functions, could inspire better usage of PBRS in other settings (especially to the very 

complicated partially observable reinforcement learning). 

3.3. Potential-Based POMDP Planning 

In this section, we describe the extension of PBRS to online POMDP planning.  

Whereas PBRS has been considered previously for planning in fully observable MDPs 

(Sorg, Singh, & Lewis, 2011), this is the first consideration of PBRS for planning within 

POMDPs.  Thus, we first briefly explain the general thought process behind the extension 

and the transformative steps from prior usage of PBRS with MDPs required to use PBRS 

with POMDPs.  We next identify several different types of potential functions possible 

with POMDPs and introduce several novel types that exploit the nature of belief states to 

provide a richer set of information than considered previously with PBRS.  We also 

prove several important results describing the impact of planning with PBRS on both (1) 

the policies favored during online POMDP planning, and (2) the optimality of planning. 

3.3.1. Extending PBRS to Online POMDP Planning 

Overview:  We begin by noting that in RL (or MDPs), the agent makes decisions based 

on the environment state 𝑠.  This is why the potential function 𝜙(𝑠) is defined over 

states.  In POMDPs,  the environment is only partially observable, and thus the agent 

rarely knows the true state of the environment.  Instead, the agent makes decisions based 

on its uncertain belief state 𝑏, which represents the agent’s probabilistic beliefs over 

which possible state is the correct one.  Therefore, since decisions are made over belief 

states in POMDPs, the first fundamental step of our extension is to define potential 

functions over belief states: 𝜙(𝑏). 
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Here, the potential function represents a priori information about the potential of 

an agent to reach high future rewards from any particular belief state 𝑏.  Shortly, we will 

detail different classes of information such a potential function can encode or measure, 

including novelties to using PBRS with POMDPs (as opposed to fully observable RL and 

MDPs, as previously considered).  

To include 𝜙(𝑏) in POMDP planning, we define analogous equations to Eqs. 3.1-

3.2 for POMDP rewards: 

                                               𝑟𝑡 = 𝑅(𝑏𝑡, 𝑎) + 𝐹(𝑏𝑡, 𝑎, 𝑏𝑡+1)    (3.3) 

                          where      𝐹(𝑏𝑡, 𝑎, 𝑏𝑡+1) = 𝛾𝛷(𝑏𝑡+1) − 𝜙(𝑏𝑡)   (3.4) 

As in RL, the reward 𝑟𝑡 for Eq. 2.6 is shaped by adding the difference in potential 

in changing belief from 𝑏𝑡 to 𝑏𝑡+1. 

Within the context of POMDPs, we now establish several different ways that the 

potential function can measure different classes of information based on belief states, 

each indicators of future rewards.   In addition to considering domain-dependent 

information about individual states (as done previously with PBRS in both fully 

observable RL and MDPs), an agent can also consider information based on the nature of 

belief states as probability distributions representing an agent’s knowledge about the 

environment.  That is, an agent can directly reason about what it knows (or does not 

know) and/or the quality of its knowledge through evaluating these probability 

distributions as a form of reflective, deliberative metareasoning. The agent can then relate 

its current knowledge to its task at hand in a potential function to predict the future 

rewards it will earn.  As we will explain below, this provides two key implications: (1) 

extending PBRS to POMDPs enables a richer set of information to be considered by 

potential functions during planning to result in better plans, and (2) this information can  
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Table 3.1: Types of Potential Functions for POMDPs 

Potential Function Type Description 

Domain-Dependent 

Information from Expected 

State Potential 

Expected value of domain-dependent information encoded in 

state-based potential functions (extended from prior uses of 

PBRS in RL and MDPs) .  These represent potential functions 

of the type commonly used with PBRS. 

Domain-Independent 

Information 

Measures of the intrinsic quality or a property of a belief state 

(as a probability distribution over hidden states), such as 

certainty in the agent’s beliefs.  These represent a novel type 

of potential function useful for metareasoning about the 

quality of agent knowledge. 

Belief Prioritization Preferential ordering on belief states to encourage agents to 

reach certain belief states before others (based on domain 

expertise).    These represent a novel type of potential function 

useful for metareasoning about the history of an agent’s 

interactions with its environment. 

Approximation of Optimal 

Value Function 

Approximations of the optimal value function from a leaf 

belief state (and thus the optimal potential function by directly 

measuring future rewards) based on pre-computed policies 

using algorithms such as Fast Informed Bound and Blind 

(Hauskrecht, 2000). These represent leaf evaluation heuristics 

commonly used in online POMDP planning (e.g., Ross et al., 

2008). 

be abstracted beyond the agent’s particular domain and can be reused across applications 

in characteristically different domains, which is in stark contrast to PBRS for fully 

observable environments where potential functions have traditionally been tailor-made 

for the agent’s particular domain.  We summarize our categorization of four proposed 

types of potential functions in Table 3.1. 

Potential Function Type 1 (Domain-Dependent Information from Expected State 

Potential): First, the information encoded in a potential function might be domain-

dependent information about environment states, similar to the usage of PBRS in fully 

observable RL and MDPs.  In this case, an extension of the potential function to belief 

states would measure the expected potential over states (analogous to Eq. 2.5), based on 

the probabilities assigned to each environment state in the belief state: 

                                                    𝜙(𝑏) = ∑ 𝑏(𝑠)𝜙(𝑠)𝑠∈𝑆      (3.5) 
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This type of potential function is a simple extension of prior potential functions to 

handle the uncertainty present in partially observable domains.  It retains the benefits of 

exploiting domain-dependent expertise about individual states that have led to the success 

of PBRS in fully observable RL and MDPs.  However, this type of potential function is 

limited in that each potential function must be carefully constructed for the application 

and domain at hand, limiting reuse across domains.  It is also difficult to apply to a new 

domain where little domain expertise is known, or domains that are very complicated 

with many possible environment states (as common to many real-world applications of 

POMDPs, e.g., robotic exploration).  

Potential Function Type 2 (Domain-Independent Information): On the other 

hand, by reflecting upon a belief state as a probability distribution representing the 

agent’s current knowledge about the environment (i.e., beliefs about the likelihood that 

any particular environment state is the correct one), we can produce additional types of 

potential functions unique to POMDPs that relate additional classes of information to the 

potential of the agent to earn future rewards.  Improving upon the first type of potential 

function described above, this information can be domain-independent and apply across 

multiple applications and domains with differing characteristics, allowing for generalized 

solutions having applicability to any domain (especially useful when domain expertise is 

limited or difficult to capture within especially large POMDPs, such as those with many 

possible hidden states). 

In particular, a POMDP potential function might measure some quality or 

property of the probabilities in a belief state to predict future rewards.  Such behavior is 

independent of any particular environment state (differing from traditional potential 



www.manaraa.com

 
 

62 

functions) and can also be independent of the domain where the POMDP is being 

employed for planning.  For example, in many domains and applications of POMDPs 

(e.g., active sensing (Boutilier, 2002; Spaan, Veiga, & Lima, 2010)), one of the primary 

goals of the agent is to discover the environment’s hidden state before it acts on its beliefs 

to achieve tasks and goals.  In such an application, it does not matter which particular 

state is the hidden one, only that the agent discovers the hidden state.  Therefore, an 

important property of a belief state related to the ability of the agent to accomplish its 

goals and earn large future rewards is the certainty in its distribution.  That is, when an 

agent is more certain, it is closer to discovering the true state of the environment and can 

soon earn large rewards for accomplishing its goal.  Considering agent certainty in this 

manner enables the agent to self-reflect on its own beliefs and metacognitively choose 

actions that will best revise its knowledge, using potential functions as a form of 

metareasoning to improve agent behavior.  Certainty in a belief state can be measured in 

several ways, each representing a domain-independent potential function leading the 

agent towards large future rewards.  One method for measuring certainty is to consider 

the entropy in the agent’s belief state, more specifically by using the negative
7
 entropy in 

the belief state (e.g., Araya-Lopez et al., 2010, c.f., Eq. 2.11): 

                                        𝜙(𝑏) = 1.0 + ∑ 𝑏(𝑠) log|S| 𝑏(𝑠)𝑠∈𝑆      (3.6) 

Alternatively, an agent can quickly estimate its overall certainty by considering 

the probability assigned to the most likely environment state in the belief state: 

                                                   𝜙(𝑏) = max𝑠∈𝑆 𝑏(𝑠)     (3.7) 

                                                           
7
 We consider the negative of the entropy since entropy measures uncertainty, which is the reciprocal of 

certainty. 
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As the agent’s overall certainty increases, so too does the probability assigned to 

the most likely state, so this potential function can serve as a good proxy for overall 

certainty.  This potential function exploits another possible property of the POMDP and 

belief state in order to speed up computation.  That is, this function is especially 

advantageous in large, complicated domains where the state space in a POMDP is 

represented as a factored state space comprised of multiple state variables: 𝑆 = 𝑆1 × 𝑆2 ×

… × 𝑆𝑚 (c.f., Section 3.4.1.2 for an example used in our experiments).  In a factored state 

space, a belief state can be represented more compactly by a set of conditional probability 

distributions between variables.  Exploiting the structure of these conditional probability 

distributions can sometimes be more efficient than dealing with the entire joint 

probability distribution, allowing the most likely state to be identified with lower 

computational complexity than finding the entropy of the belief state (Eq. 3.6) or some 

other property of a belief state that requires iterating over all possible states. 

Of note, this type of potential function is very closely related to belief-based 

rewards proposed by Araya-Lopez et al. (2010), which directly reward the agent based on 

measurable qualities of belief states (including Eq. 3.6).  However, there is both (1) a lack 

of theoretical understanding of the impact on agent policies from belief-based rewards, 

which we provide (in the next section) by including such measures as potential functions 

within PBRS, and (2) a lack of empirical evidence of their usefulness on POMDP 

benchmarks, which we provide in the context of PBRS in Section 3.5. 

Potential Function Type 3 (Belief Prioritization): Additionally, since belief states 

represent both (1) an agent’s knowledge about the current state of the environment, and 

(2) a sufficient statistic describing an agent’s history of observations (Kaelbling, Littman, 
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& Cassandra, 1998), they can be used to determine preferential orderings on an agent’s 

actions and beliefs, which can be encoded in a potential function.  In some applications, a 

domain expert might have some knowledge about strategies for plans that could be used 

to achieve an agent’s goals, but specific details about how to implement those strategies 

could be lacking.  That is, an expert might know that to achieve its goal, the agent needs 

particular knowledge about particular states (e.g., that the state is either highly likely or 

unlikely) before it can complete its task or learn about another particular state.  Or the 

expert might know that certain observations are beneficial, but it is unknown how to 

achieve those observations.  In either case, a potential function can assign higher value to 

belief states that include certain knowledge (e.g., a particular state is highly likely or 

unlikely) or are only reachable after certain observations. 

This is a way of encoding domain expertise about agent beliefs that strategically 

guides the agent to achieve certain beliefs before others, without necessarily requiring 

prior knowledge about how to tactically achieve those beliefs.  In turn, this approach 

possibly speeds up an agent’s knowledge acquisition so that it can accomplish tasks and 

goals faster, requiring less planning and achieving faster and greater reward 

accumulation. 

For example, consider a robotic agent
8
 responsible for gathering information 

about the quality of a set of rocks 𝑟 ∈ 𝑅.  The agent’s goal is to determine with near 

perfect certainty whether each rock is good or bad before moving on to another area of 

interest.  In this situation, a potential function could assign higher priority to belief states 

that reflect histories where the agent has tested every rock and determined whether each 

                                                           
8
 This example is based on the RockSample benchmark problem described in more detail in Section 3.4.1.2 

and used in our experimental study evaluating the empirical performance of PBRS for online POMDP 

planning. 
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is good or bad in order to guide the agent to take actions that perform the necessary 

sensing as quickly as possible.  Assuming a binary state variable for each rock 

(representing a good or bad state), the agent’s belief state would be almost perfectly 

certain a rock was good if 𝑏(𝑟) > 0.99 and almost perfectly certain the rock was bad if 

𝑏(𝑟) < 0.01.  Then the potential function:  

                   𝜙(𝑏) = {
−1000      if  {𝑟 ∈ 𝑅 | 0.01 < 𝑏(𝑟) < 0.99} ≠ ∅
 0                                                                          else

    (3.8) 

represents a potential function that prioritizes beliefs (by penalizing beliefs representing 

histories where the agent has not tested and determined the state of every rock), thereby 

encouraging the agent to perform its sensing as soon as possible.  Moreover it does so 

without directly explaining to the agent how to do so, and thus represents strategic 

(instead of tactical) advice. 

Potential Function Type 4 (Approximation of Optimal Value Function): Finally, 

since potential functions are equivalent to leaf evaluation heuristics in planning (Sorg, 

Singh, & Lewis, 2011), the optimal potential function is the (domain-dependent, infinite 

horizon) optimal value function 𝑉∗(𝑏) = 𝑉(𝑏, 𝜋∗) under the (infinite horizon) optimal 

policy 𝜋∗, since this function exactly measures the future rewards earned from a belief 

state when following the optimal policy in the agent’s particular application.  Thus, such 

a potential function contains exactly the information missing from approximate planning, 

overcoming the problems addressed in this chapter.  However, such optimal policies and 

value functions are rarely computable or known in practice (or else we would not need 

techniques such as PBRS in the first place), so the best we can often do is to approximate 

these values.  
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Within the heuristic search online POMDP algorithm literature (e.g., Ross & 

Chaib-draa, 2007; Ross et al., 2008; Zhang & Chen, 2012), it is common to approximate 

𝑉∗(𝑏) using upper and lower bounds on the value function: 𝑉(𝑏) and 𝑉(𝑏), respectively, 

with 𝑉(𝑏) ≤ 𝑉∗(𝑏) ≤ 𝑉(𝑏), frequently employed as leaf evaluation heuristics (e.g., Ross 

et al., 2008).  These approximations are calculated using policies 𝜋𝐹𝐼𝐵 and 𝜋𝐵𝑙𝑖𝑛𝑑 formed 

offline using algorithms such as Fast Informed Bound (FIB) and Blind (Hauskrecht, 

2000), such that 𝑉(𝑏) = 𝑉(𝑏, 𝜋𝐹𝐼𝐵) and 𝑉(𝑏) = 𝑉(𝑏, 𝜋𝐵𝑙𝑖𝑛𝑑).  With these 

approximations, we can then define potential functions 𝜙(𝑏) = 𝑉(𝑏) and 𝜙(𝑏) = 𝑉(𝑏).  

The tighter the bounds (depending on the application), the better these approximations 

estimate the optimal value function and thus better guide the agent to optimal rewards. 

By using 𝑉(𝑏) and/or 𝑉(𝑏) as potential functions, PBRS is able to include the key 

heuristic information used to guide planning in state-of-the-art heuristic functions without 

limiting the breadth of planning, and thus not leave the agent in possibly dangerous 

situations where it reaches a belief state for which it has performed minimal advance 

planning.  Of note, this type of potential function does require offline computations, so 

this type has the same pre-deployment costs associated with other online POMDP 

planning approaches discussed in Section 3.2.1, which could be problematic in large, 

complex real-world problems. 

Discussion: Overall, potential functions over belief states can include information (1) 

about individual states (Type 1, as previously considered with PBRS in RL and MDP 

planning), (2) about direct estimations of future rewards from a belief state (Type 4, as 

previously considered with leaf evaluation heuristics), and/or (3) about belief states 

themselves independent of individual states, in both domain-independent and domain-
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dependent manners (Types 2 and 3).  This enables a richer set of information to be 

embedded during reward shaping for guiding online POMDP planning towards greater 

future rewards than previously considered in the PBRS literature. 

Moreover, amongst the two novel types of potential functions (Types 2 and 3) 

discovered in this research, reflecting on (1) agent knowledge to determine how to act 

(e.g., measuring the quality of knowledge about the current state of the environment as 

indicated by certainty measures, Eqs 3.6-3.7) or (2) the history of the agents’ interactions 

with the environment (e.g., through priority orderings on belief states both currently 

experienced and soon reachable) both represent metareasoning methods for improving 

general reasoning in POMDPs with interesting potential applications in many domains 

(e.g., better information gathering in active sensing applications). 

Comparing PBRS with other types of approaches to online POMDP planning, we 

see that shaping rewards is advantageous because the shaped amount encourages the 

agent to place higher value on action sequences that can potentially lead to higher future 

rewards, including beyond the planning horizon.  Thus, planning with a potential function 

can allow the agent to estimate cumulative, future rewards (or at least maximize 

indicators possibly correlated to large future rewards, such as belief certainty) in order to 

better evaluate the long term values of taking different actions while planning only within 

short finite horizons without having to spend the limited time on deep planning.  As a 

result of these time savings, the agent can instead maintain a breadth of planning to avoid 

the pitfalls identified in Section 3.1, such as suboptimal finite horizon planning due to not 

considering all belief states, and avoiding reaching dangerous or undesirable situations 

with no forethought on what to do or how to reach a better situation in order to eventually 
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achieve its goals.  Moreover, implicitly estimating future, cumulative rewards can 

possibly achieve superior action selection than spending time explicitly building such 

estimates with depth-focused planning, if the agent faces a problem where very long 

sequences of actions are required to reach the goal from its current situation, and there is 

not enough time to plan for such a long sequence, even with depth-focused approaches. 

Additionally, when comparing our proposed PBRS approach to other types of 

online POMDP planning, we note that there is a distinct difference in the way the 

potential function values are considered versus (1) how heuristic function values are used 

in heuristic search methods, or (2) how probabilities and reward estimations are used in 

Monte Carlo search methods.  In our proposed approach, potential function values are 

never used to control planning – they are not used to guide which belief states are 

expanded in the policy tree at any point in time during planning.  In heuristic search 

methods, on the other hand, the heuristic values calculated for each belief state do indeed 

determine which belief state is expanded next, in order to guide depth-focused planning, 

by selecting some belief states for which to plan and excluding others.  Likewise, in 

Monte Carlo search methods, the calculated probabilities for transitions between belief 

states and reward estimations are used to control how the plan is expanded in a depth-

focused fashion.  Instead, in our approach, we propose performing a simple breadth-first 

search (BFS) to consider all belief states within the short, finite horizon, which does not 

require special control of plan expansion, in order to maintain the breadth of planning and 

achieve the benefits previously described. 
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That is, the reward shaping performed by our inclusion of potential functions does 

not cause some belief states to be considered or excluded during planning
9
 (as controlled 

by heuristic functions and random sampling), but instead changes the evaluation of the 

value of action sequences by adding domain-dependent or domain-independent 

information about belief states reached by those action sequences in order to place greater 

value on policies that have the potential to achieve greater long term, cumulative rewards, 

even if those action sequences would not be considered optimal under the short, finite 

horizon used for planning with only the original reward function.  In the next subsection, 

we provide theoretical results illustrating how the evaluation of the value of policies is 

changed with reward shaping, as well as the benefits of this change. 

Finally, comparing PBRS to the leaf evaluation heuristics, we note that although 

the two approaches are functionally equivalent (Sorg, Singh, & Lewis, 2011), there are 

still advantages to studying and employing PBRS for online POMDP planning.  First, 

PBRS and its mathematical framework (especially Eqs. 3.3-3.4) are the natural extension 

of leaf evaluation heuristics to anytime online planning algorithms.  That is, such 

algorithms might not know in advance how long they will have to run, and instead must 

be capable of both (1) returning a plan at any point in time, and (2) continually running as 

more time is allotted to improve the quality of the plan calculated.  Thus, an anytime 

online planning algorithm might not know in advance when it will stop.  In turn, it will 

not know in advance which nodes will be leaves in the final policy tree, so it will not 

necessarily know where to apply the leaf evaluation heuristics.  The difference function 

                                                           
9
 On the other hand, if we used potential function values to determine how to expand plans, then they 

would simply represent heuristic functions and the result would be a standard heuristic search algorithm.  

Since our potential functions are used instead for the evaluation of action values, potential functions are 

orthogonal to heuristic functions. 
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(Eq. 3.4) in PBRS incrementally considers each node to be a leaf (and is evaluated with a 

potential function as a leaf evaluation heuristic), then removes that additional shaped 

value when a node in the policy tree ceases to be a leaf (as the tree is expanded while 

time is still allocated for planning).  Therefore, the mathematical framework for PBRS 

defines the calculation procedure for employing leaf evaluation heuristics in anytime 

online planning algorithms, and the theoretical analyses below informs us on how both 

PBRS and leaf evaluation heuristics would perform in anytime online planning. Second, 

unlike the leaf evaluation heuristics commonly used in the literature (our Type 4 potential 

functions), the first three potential function types proposed above do not require any 

precomputation before operating in the environment. Thus, an agent using PBRS can 

operate without having to do any work in advance, which is important when (1) the 

problem domain is very large and precomputations are prohibitively expensive, or (2) the 

agent must be quickly reconfigured to deploy to multiple environments (e.g., search and 

rescue robotics). 

3.3.2. Impact of PBRS on Online Planning 

Because incorporating PBRS into online POMDP planning involves shaping the 

rewards the agent wants to earn, the policies formed using shaped or unshaped rewards 

could be different.   This provides us with a dilemma.  On the one hand, due to time 

constraints in online planning, we want to find better policies with PBRS since any policy 

found is only optimal over the finite horizon used for planning, and thus only 

approximately optimal over the infinite horizon.  As such, the policies found during 

planning can suffer from over- and under-estimation problems (which PBRS is intended 

to address), as described in Section 3.2.1.  On the other hand, since PBRS entails 
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maximizing shaped rewards with the addition of the potential function, we do not want to 

sacrifice the ability to optimize the original reward function 𝑅 over the long run (i.e., 

infinite horizon), which is, after all, the ultimate goal of the agent. 

To better understand the relationship between the value of policies with respect to 

shaped (with PBRS) and unshaped (original) rewards, we evaluate these values from the 

theoretical perspective.  We follow a similar approach taken to understand the values of 

policies with and without PBRS in RL (e.g., Asmuth, Littman, & Zinkov, 2008). 

In the following, we develop several key results.  First, Lemma 3.1 derives the 

difference in the valuations of an arbitrary policy both with and without reward shaping 

over the finite horizons used for planning.  This represents the difference between how 

good a policy looks under one approach or the other.  Next, Theorem 3.2 establishes the 

conditions (Eq. 3.13) for which PBRS can lead the agent to a different policy than the 

original reward function when performing finite horizon planning, based on the results of 

Lemma 3.1.  In conjunction, Remark 3.3 observes the condition (small planning horizons 

𝑛) when a greater number of potential functions might lead PBRS to different policies 

than planning without reward shaping.  Afterwards, Theorem 3.4 considers the 

relationship between (infinite horizon) optimal policies with and without reward shaping 

to establish that reward shaping still causes the agent to optimize its original reward 

function over the infinite horizon, in spite of working on a modified objective function.  

Remark 3.5 then extends this result (based partly on the proof to Theorem 3.4) to observe 

that PBRS also performs well as the planning horizon increases, regardless of the 

potential function chosen.  Finally, Theorem 3.6 establishes a sufficient condition for the 
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objective function (Eq. 2.6) with shaped rewards (Eq. 3.3) to remain convex and thus still 

be solvable by a wide range of POMDP solvers. 

We begin by computing the difference between the values of a policy for a finite 

horizon 𝑛.  This captures the impact of using PBRS with online planning for short 

horizons required due to time constraints.  

Lemma 3.1. Let 𝑆, 𝐴, 𝛺, 𝑇, 𝑂, 𝑅, 𝑏0, 𝛾 from the definition of a POMDP be 

given, and let 𝑛 ∈ ℕ be a fixed planning horizon, 𝜙 be a potential function 

over belief states, and 𝜋 be a policy of action.  Then the difference 

between the value with PBRS 𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋) of 𝜋 starting at 𝑏0 and the 

value using unshaped rewards 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋) is given by: 

          𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋) − 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋 ) = 𝛾𝑛 ∑ 𝑃(𝑏𝑛|𝜋, 𝑏0)𝜙(𝑏𝑛)𝑏𝑛∈𝛱(𝑠) − 𝜙(𝑏0)  (3.9) 

Proof. For notational convenience, we denote the unshaped reward earned at each 

step 𝑡 ∈ {0, 1, … , 𝑛 − 1} as 𝑅𝑡: 

                                                     𝑅𝑡 = 𝑅(𝑏𝑡, 𝑎𝑡) = 𝑟𝑡
𝑜𝑟𝑖𝑔

     (3.10) 

and the shaped reward earned at each step 𝑡 as 𝑅𝑡 + 𝐹𝑡: 

                                   𝑅𝑡 + 𝐹𝑡 = 𝑅(𝑏𝑡, 𝑎𝑡) + 𝐹(𝑏𝑡, 𝑎𝑡, 𝑏𝑡+1) = 𝑟𝑡
𝑃𝐵𝑅𝑆   (3.11) 

where 𝑏𝑡 denotes the belief state after performing 𝑡 actions and 𝑎 = 𝜋(𝑏𝑡) is the action 

chosen according to policy 𝜋. 

As an intermediate result, consider an arbitrary history 𝐻 = {𝑏0, 𝑎0, 𝑜1, 𝑏1, … , 𝑏𝑛} 

(i.e., a fixed sequence for a particular experience in the environment) consisting of (1) the 

actions taken by the agent according to policy 𝜋, (2) the resulting observations, and (3) 

the sequence of beliefs after making those observations.  For fixed 𝑛, the value using 

unshaped rewards of any policy 𝜋 according to particular history 𝐻 can be computed as 

the cumulative reward series: 

                              𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋, 𝐻) = ∑ 𝛾𝑡𝑟𝑡
𝑜𝑟𝑖𝑔𝑛−1

𝑡=0 = ∑ 𝛾𝑡𝑅𝑡
𝑛−1
𝑡=0     (3.12) 
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and the value using shaped rewards of the same policy 𝜋: 

𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋, 𝐻) = ∑ 𝛾𝑡𝑟𝑡
𝑃𝐵𝑅𝑆𝑛−1

𝑡=0   

               = ∑ 𝛾𝑡(𝑅𝑡 + 𝐹𝑡)𝑛−1
𝑡=0   

               = ∑ 𝛾𝑡(𝑅𝑡 + 𝛾𝜙(𝑏𝑡+1) − 𝜙(𝑏𝑡))𝑛−1
𝑡=0   

               = ∑ 𝛾𝑡𝑅𝑡
𝑛−1
𝑡=0 + ∑ 𝛾𝑡+1𝜙(𝑏𝑡+1)𝑛−1

𝑡=0 − ∑ 𝛾𝑡𝜙(𝑏𝑡)𝑛−1
𝑡=0   

               = 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋, 𝐻 ) + [∑ 𝛾𝑡𝜙(𝑏𝑡)𝑛−1
𝑡=1 + 𝛾𝑛𝜙(𝑏𝑛)] − [∑ 𝛾𝑡𝜙(𝑏𝑡)𝑛−1

𝑡=1 + 𝜙(𝑏0)]           

               = 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋 , 𝐻) + 𝛾𝑛𝜙(𝑏𝑛) − 𝜙(𝑏0)  

Because this result holds for arbitrary history 𝐻 starting at arbitrary 𝑏0, it will 

hold for any sequence of beliefs when following policy 𝜋.  Therefore, since the valuation 

of a policy from a belief state is the expected value over all possible histories (Eq. 2.6), 

we find that: 

𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋) = 𝐸[𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋, 𝐻)] 
               = 𝐸[𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋, 𝐻) + 𝛾𝑛𝜙(𝑏𝑛) − 𝜙(𝑏0)] 

               = 𝐸[𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋, 𝐻)] + 𝛾𝑛𝐸[𝜙(𝑏𝑛)] − 𝐸[𝜙(𝑏0)] 

               = 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋) + 𝛾𝑛 ∑ 𝑃(𝑏𝑛|𝜋, 𝑏0)𝜙(𝑏𝑛)

𝑏𝑛∈𝛱(𝑠)

− 𝜙(𝑏0)                                           ∎ 

where 𝑃(𝑏𝑛|𝜋, 𝑏0) is the probability of transitioning to 𝑏𝑛 when following policy 𝜋 from 

initial belief 𝑏0, considering the probabilities of the necessary state transitions and 

observations required to reach 𝑏𝑛.  From this result, we can subsequently find the 

following theorem: 

Theorem 3.2: Let 𝑆, 𝐴, 𝛺, 𝑇, 𝑂, 𝑅, 𝑏0, 𝛾 from the definition of a POMDP be 

given, and let 𝑛 ∈ ℕ be a fixed (finite) planning horizon and 𝜙 be a 

potential function over belief states.  Then, the policy 𝜋′ optimizing 𝑉𝑃𝐵𝑅𝑆 

will differ from the policy 𝜋 optimizing 𝑉𝑜𝑟𝑖𝑔 over the fixed horizon 𝑛, 

provided that 

  𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋) − 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋′) < 𝛾𝑛 ∑ 𝜙(𝑏𝑛)[𝑃(𝑏𝑛|𝜋′, 𝑏0) − 𝑃(𝑏𝑛|𝜋, 𝑏0)]𝑏𝑛∈𝛱(𝑆)  (3.13) 

Proof. Consider policy 𝜋 that optimizes unshaped rewards 𝑉𝑜𝑟𝑖𝑔 over finite 

horizon 𝑛.  If there is another policy 𝜋′ satisfying Eq. 3.13, meaning that the difference in 
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the value of 𝜋 and 𝜋′ under the original reward function 𝑅 is less than the difference in 

the expected (discounted) potential values along the planning horizon, then: 

𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋′) − 𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋) 
               = [𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋′) + 𝛾𝑛 ∑ 𝑃(𝑏𝑛|𝜋′, 𝑏0)𝜙(𝑏𝑛)𝑏𝑛∈𝛱(𝑆) − 𝜙(𝑏0)]  

                                    −[𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋) + 𝛾𝑛 ∑ 𝑃(𝑏𝑛|𝜋, 𝑏0)𝜙(𝑏𝑛)𝑏𝑛∈𝛱(𝑆) − 𝜙(𝑏0)]  

               = [𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋′) − 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋)] + 𝛾𝑛 ∑ 𝑃(𝑏𝑛|𝜋′, 𝑏0)𝜙(𝑏𝑛)𝑏𝑛∈𝛱(𝑆)   
                                    −𝛾𝑛 ∑ 𝑃(𝑏𝑛|𝜋, 𝑏0)𝜙(𝑏𝑛)𝑏𝑛∈𝛱(𝑆)   

               = [𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋′) − 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋)] 

                                    +𝛾𝑛 ∑ 𝜙(𝑏𝑛)[𝑃(𝑏𝑛|𝜋′, 𝑏0) − 𝑃(𝑏𝑛|𝜋, 𝑏0)]𝑏𝑛∈𝛱(𝑆)   
               >  𝛾𝑛 ∑ 𝜙(𝑏𝑛)[𝑃(𝑏𝑛|𝜋, 𝑏0) − 𝑃(𝑏𝑛|𝜋′, 𝑏0)]𝑏𝑛∈𝛱(𝑆)   
                                    +𝛾𝑛 ∑ 𝜙(𝑏𝑛)[𝑃(𝑏𝑛|𝜋′, 𝑏0) − 𝑃(𝑏𝑛|𝜋, 𝑏0)]𝑏𝑛∈𝛱(𝑆)   

               = 0 
 

Thus, 𝜋′ achieves higher 𝑉𝑃𝐵𝑅𝑆 than 𝜋, so 𝜋 cannot optimize 𝑉𝑃𝐵𝑅𝑆 over the 

finite horizon 𝑛. Therefore, planning with PBRS can result in a different policy using a 

finite horizon.  Moreover, provided the potential function guides the agent towards 

beliefs that earn higher rewards beyond the planning horizon, PBRS could improve upon 

finite horizon policies that would be found without reward shaping. ∎ 

Furthermore, the impact of the potential function on the valuation of a policy 

using shaped rewards depends on the size of the planning horizon 𝑛.  This leads us to the 

following remark: 

Remark 3.3: The upper bound (Eq. 3.13) on the permissible difference in 

the valuations of the (finite horizon) optimal policies with and without 

reward shaping is greater as the finite planning horizon 𝑛 decreases, 

making it easier to find a potential function 𝜙 that satisfies Eq. 3.13 when 

the planning horizon is small. 

Recall that the discount factor is restricted such that 𝛾 ∈ [0, 1).  Thus, as 𝑛 

decreases, 𝛾𝑛 increases.  Hence, the resulting greater upper bound on the differences 

between valuations permits a larger number of different policies to optimize each 

objective function (Eqs. 3.9, 3.13 and Lemma 3.1) over the finite horizon 𝑛, so planning 
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with PBRS is more able to find a different policy than planning without reward shaping 

when the horizon is short.  Therefore, provided a suitable potential function, PBRS can 

be most beneficial when it is most necessary (i.e., when planning without PBRS is at 

greatest risk of being suboptimal (over the infinite horizon) due to short horizons and 

limited planning time). 

Next, we prove that planning with PBRS does not sacrifice optimality over the 

infinite horizon with respect to the original reward function 𝑅, which ultimately the agent 

wants to maximize.  That is, a policy is optimal (without finite horizon approximation) 

with PBRS if and only if it is also optimal without reward shaping using just the original 

rewards. Therefore, even though using shaped or unshaped rewards can find different 

policies for short horizons, using PBRS also optimizes the original reward function 𝑅 

(over the infinite horizon) and is working towards the agent’s ultimate goal. 

Theorem 3.4: Let 𝑆, 𝐴, 𝛺, 𝑇, 𝑂, 𝑅, 𝑏0, 𝛾 from the definition of a POMDP be 

given, and let 𝜙 be a potential function over belief states.  Then, a policy 

𝜋∗ is optimal (over the infinite horizon) with reward shaping using PBRS 

if and only if 𝜋∗ is also optimal (over the infinite horizon) without reward 

shaping. 

Proof: Let 𝜋 be any policy. From Lemma 3.1, the value of this policy with PBRS 

over the infinite horizon is: 

    𝑉𝑃𝐵𝑅𝑆(𝑏0, 𝜋) = 𝐸[∑ 𝛾𝑡𝑟𝑡
𝑃𝐵𝑅𝑆∞

𝑡=0 ] = lim𝑛→∞ 𝐸[∑ 𝛾𝑡𝑟𝑡
𝑃𝐵𝑅𝑆𝑛−1

𝑡=0 ]     

               = lim𝑛 →∞[𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋) + 𝛾𝑛𝐸[𝜙(𝑏𝑛)] − 𝜙(𝑏0)]     

               = 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋) − 𝜙(𝑏0) + lim𝑛→∞ 𝛾𝑛𝐸[𝜙(𝑏𝑛)]  
               = 𝑉𝑜𝑟𝑖𝑔(𝑏0, 𝜋) − 𝜙(𝑏0)  

since 𝛾 ∈ [0,1) and thus lim𝑛→∞ 𝛾𝑛+1 = 0.  Moreover, 𝜙(𝑏0) is constant since initial 

belief state 𝑏0 is fixed.  Thus, any policy 𝜋∗ that optimizes 𝑉𝑃𝐵𝑅𝑆 over the infinite 

horizon also optimizes 𝑉𝑜𝑟𝑖𝑔, and vice-versa.  Therefore, 𝜋∗ is optimal over the infinite 
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horizon with PBRS if and only if it is also optimal over the infinite horizon for the 

original rewards.  ∎ 

From the perspective of finite horizon policies (which the agent is required to 

calculate to approximate the infinite horizon due to computational constraints), Theorem 

3.4 and its proof result in the following important implication: 

Remark 3.5: Planning with PBRS also results in earning greater 

(unshaped) reward as the planning horizon increases (or equivalently, 

with more planning time), even though it is optimizing a different objective 

function than the original reward function. 

Both the proof for Theorem 3.4 and Lemma 3.1 imply that the valuations of 

policies with and without reward shaping become closer and closer as the planning depth 

increases.  Thus, the policies chosen by each method (with or without reward shaping) 

also become more similar since these policies maximize their respective valuations.  

Because approximate planning without reward shaping generally results in better policies 

as the planning depth increases (since more information is added to the estimation of 

cumulative, future rewards), this implies that the policies formed with PBRS will also 

improve with respect to maximizing the original reward function. 

Combined with Remark 3.3, this implies that PBRS is beneficial to the agent not 

only when the planning horizon is small (provided a good potential function), but also as 

the planning horizon increases (regardless of potential function). 

Finally, we derive the following theorem that is important for determining when 

pre-existing POMDP planning solvers are compatible with PBRS. 

Theorem 3.6: Let 𝑆, 𝐴, 𝛺, 𝑇, 𝑂, 𝑅, 𝑏0, 𝛾 from the definition of a POMDP be 

given, and let 𝜙 be a potential function over belief states.  Provided that 𝜙 

is convex, the objective function solved by the agent (Eq. 2.6) remains 

convex and can be solved by the traditional set of POMDP solvers. 
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Proof. Assume that 𝜙 is indeed convex.  Then, Eq. 3.3 is the linear combination 

of convex functions (Eq. 2.4 is also convex) (Boyd & Vandenberghe, 2004).  Thus, the 

valuation function (Eq. 2.6) remains convex, as proven by Araya-Lopez et al. (their 

Theorem 3.1 in (2010)) (originally established outside the context of PBRS).  Therefore, 

shaped rewards with PBRS can also be optimized by a wide range of POMDP solvers 

relying on convexity, not just those considered in this chapter. ∎ 

We note here that many of the potential functions provided as examples in this 

chapter (e.g., Eq. 3.6 and 3.7 above) are indeed convex. 

Summary. To summarize our theoretical results, we observe that Lemma 3.1 

defines the difference in the evaluation of a policy both (1) with reward shaping using 

PBRS (𝑉𝑃𝐵𝑅𝑆) and (2) without reward shaping that considers only the original reward 

function 𝑅 (𝑉𝑂𝑟𝑖𝑔).  In turn, Theorem 3.2 provides us with a necessary condition for 

when a policy would be evaluated as having higher value with PBRS than without.  That 

is, this condition establishes when a different policy might be favored and returned by the 

planning algorithm, instead of the policy that is optimal—considering only the original 

reward function—for the small, finite horizon 𝑛 yet possibly suboptimal over the long 

run.  Remark 3.3 then notes that the condition of Theorem 3.2 is looser for the smallest 

planning horizons, making it easier for PBRS to favor a different policy that could be 

closer to optimal over the long run than the small, finite-horizon optimal policy.  This 

should cause us to observe the most impactful benefits on agent performance from PBRS 

under the tightest time constraints on planning.  Theorem 3.4 and Remark 3.5, on the 

other hand, explores the opposite direction and establishes that as the planning horizon 

increases, the favored policies found with PBRS also optimize the long term, cumulative 
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rewards of the agent, which is the agent’s ultimate goal.  This is true, even though the 

agent is directly optimizing a slightly different objective function.  This should cause us 

to observe continued good performance from PBRS as planning constraints are relaxed.  

Finally, Theorem 3.6 establishes that POMDP planning algorithms relying on convexity 

in the value function to efficiently find optimal policies will also efficiently find optimal 

policies under PBRS. 

Of note, most of these theoretical results exploit the fact that reward shaping 

under PBRS takes the form of the difference of potential functions (Eqs. 3.3-3.4).  

Without this difference and instead using arbitrary reward shaping (e.g., simply adding 

additional value at each node of the policy tree), the telescoping sums would disappear 

from the proofs.  Without the telescoping sums, (1) we would not be able to bound the 

difference of the evaluation of a policy with and without reward shaping (Theorem 3.2), 

and we need this bound for Remark 3.3 describing the usefulness of PBRS with small 

planning horizons, which is important since we are considering time constrained, finite 

horizon planning that must stop before finding an optimal (infinite horizon) policy, and 

(2) we could not establish that as the planning horizon increases, the policy optimizing 

PBRS also optimizes the original reward function, which would in turn affect the ability 

of planning with PBRS to prefer policies that maximize long term, cumulative rewards. 

3.4. Experimental Setup 

To evaluate the performance of using PBRS to improve online POMDP planning, 

we conducted an empirical study that compares agent performance with and without 

PBRS (using the potential functions summarized in Table 3.2) in three benchmark 
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POMDP planning problems described below: (1) Tag (Pineau, Gordon, & Thrun, 2003), 

(2) RockSample (Smith & Simmons, 2004), and (3) AUVNavigation (Ong et al., 2010). 

These three benchmarks were chosen for our experimental study for the following 

reasons.  First, they are commonly used across the POMDP literature, either together 

(e.g., Ong et al., 2010; Zhang & Chen, 2012) or at least in some combination (e.g., 

Pineau, Gordon, & Thrun, 2003; Ross et al., 2008; Silver & Veness, 2010; Somani et al., 

2013).  Thus, they are relatively well understood.  Second, they represent a varying range 

of problems: (1) Tag is a relatively small problem (i.e., a low number of states, actions, 

and observations) with high levels of uncertainty, but a relatively simple required 

behavior to solve the problem, (2) RockSample is a larger problem than Tag and one for 

which upper and lower bound estimates provide strong clues on how to behave, and (3) 

AUVNavigation is an even larger problem (especially with two orders of magnitude 

larger observation space than Tag or RockSample) with a very high amount of 

uncertainty and a difficult sequence of behavior required to solve the problem.  Thus, 

they represent very different environments.  Moreover, AUVNavigation both: (a) requires 

a long sequence of information gathering then movement actions to reach the ultimate 

goal state, and (b) contains dangerous situations that cause the agent to be unable to ever 

accomplish its goal, both of which were hypothesized in Section 3.1 to be problematic for 

depth-focused planning algorithms and could benefit from breadth-focused planning with 

implicit future reward estimations, as accomplished by PBRS for online POMDP 

planning.  We limit our study to considering only three benchmarks for two reasons: (1) 

much of the POMDP literature considers a similar number of benchmarks (e.g., Ross et 

al., 2008; Somani et al., 2013; Zhang & Chen, 2012), and (2) due to the 



www.manaraa.com

 
 

80 

comprehensiveness of our experimental setup for each benchmark, resulting in much time 

required to both (i) run the experiments for each benchmark (c.f., the start of Section 3.5) 

and (ii) implement and test many different potential functions on each benchmark.  For 

comparison and easy reference, we summarize the potential functions considered in each 

benchmark in Table 3.2. 

 

 

Table 3.2: Summary of Potential Functions Used in Each Benchmark Problem 
Potential  

Function 

Type Tag RockSample AUVNavigation 

MBD Type 1: Domain-Dependent  

Information from Expected State  

Potential 

Eq. 3.14   

CD 
 

Eq. 3.15 
 

GD 
  

Eq. 3.17 

Entropy Type 2: Domain-Independent  

Information 

Eq. 3.6 

TopBelief Eq. 3.7 

NoExit Type 3: Belief Prioritization  Eq. 3.16  

EMBD 

Types 1 + 2: Combination of  

Domain-Dependent &  

Domain-Independent Information 

Eq. 3.6  

+ Eq. 3.14 

  

TBMBD Eq. 3.7  

+ Eq. 3.14 

  

ECD  Eq. 3.6  

+ Eq. 3.15 

 

TBCD  Eq. 3.7  

+ Eq. 3.15 

 

EGD   Eq. 3.6  

+ Eq. 3.17 

TBGD   Eq. 3.7  

+ Eq. 3.17 

NoExitCD Types 1 + 3: Combination of 

Domain-Dependent Information & 

Belief Prioritization 

 Eq. 3.15   

+ Eq. 3.16 

 

HBGD   Eq. 3.18 

NoExitE 
Types 2 + 3: Combination of 

Domain-Independent Information & 

Belief Prioritization 

 Eq. 3.6   

+ Eq. 3.16 

 

NoExitTB  Eq. 3.7   

+ Eq. 3.16 

 

NoExitECD 

Types 1 + 2 + 3: Combination of  

Domain-Dependent &  

Domain-Independent Information & 

Belief Prioritization 

 Eq. 3.6   

+ Eq. 3.15  

+ Eq. 3.16 

 

NoExitTBCD  Eq. 3.7   

+ Eq. 3.15  

+ Eq. 3.16 

 

Upper 
Type 4: Approximation of Optimal 

Value Function 

𝑉(𝑏) = 𝑉(𝑏, 𝜋𝐹𝐼𝐵) 

Lower 
𝑉(𝑏) = 𝑉(𝑏, 𝜋𝐵𝑙𝑖𝑛𝑑) 
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3.4.1. Benchmark Problems 

3.4.1.1. Tag 

The first benchmark problem we consider is Tag (Pineau, Gordon, & Thrun, 

2003), in which a robotic agent (the tagger) plays laser tag with an opponent.  Both 

agents are randomly placed in a 2D grid consisting of 29 locations and the tagger agent’s 

task is to find and tag the opponent, whereas the opponent tries to prolong the game by 

moving away from the tagger.  Both agents always know their own location and the 

opponent knows where the tagger is at all times, but the tagger can only observe the 

opponent when they are in the same cell. The tagger agent earns a penalty of -1 for 

moving in each cardinal direction (North, South, East, and West) to find its prey, a larger 

penalty of -10 for trying to tag the opponent without being in the same cell, and a reward 

of +10 for successfully tagging the opponent, which ends the game.  The tagger agent’s 

discounted rewards are maximized by finding and tagging the opponent as fast as 

possible. 

Altogether, Tag represents a relatively small benchmark problem, only consisting 

of 870 states, 5 actions (movement and tagging), and 2 observations (𝑇𝑟𝑢𝑒 if the tagger 

and opponent are in the same cell, else 𝐹𝑎𝑙𝑠𝑒).  However, the problem is highly uncertain 

as the tagger can only identify the opponent’s location if they are in the same cell, else it 

must estimate where the dynamic opponent is as it moves away from the tagger.  As such, 

the distance of the tagger from the end of the game can be quite long and dynamically 

changes as both agents move through the grid.  Therefore, the actual horizon for the 

problem can be particularly long, and time constrained planning can lead to suboptimal 

actions. 
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To improve online, short horizon planning in Tag, we consider seven potential 

functions representing different domain-independent and -dependent knowledge pointing 

the agent to future rewards beyond the planning horizon: 

 Entropy, using a domain-independent measure of the certainty in the agent’s belief, 

following Eq. 3.6 

 TopBelief, using another domain-independent measure of the certainty in the agent’s 

belief represented by Eq. 3.7, which is similar to Eq. 3.6, but (1) focuses on certainty in a 

single state (the most believed state), rather than across the entire belief state and (2) 

exploits the factored state space (fully observable tagger location vs. partially observable 

opponent location) to reduce computation 

 MaxBeliefDistance (MBD), using domain-dependent information to assign greater 

potential to belief states closer to the most likely location of the opponent, thus 

motivating the agent to move towards the opponent and end the game as fast as possible, 

hopefully minimizing incurred penalties and maximizing rewards: 

                                                       𝜙(𝑏) =
1

𝐸[𝑑(𝑜,𝑙)]+1
     (3.14) 

where 𝑜 is a possible opponent location, 𝑙 is the agent’s location, 𝑑 measures Euclidian 

distance between 𝑜 and 𝑙, and 𝐸[𝑑(𝑜, 𝑙)] is the expected distance based on all possible 

opponent locations in belief state 𝑏. 

 EMBD, which sums Entropy (Eq. 3.6) and MaxBeliefDistance (Eq. 3.14) to combine 

domain-independent and domain-dependent information in the same potential function 

 TBMBD, which sums TopBelief (Eq. 3.7) and MaxBeliefDistance (Eq. 3.14) to also 

combine domain-independent and domain-dependent information in the same potential 

function 

 Upper, which uses 𝑉(𝑏) calculated using 𝜋𝐹𝐼𝐵 formed using the Fast Informed Bound 

algorithm (Hauskrecht, 2000) as an approximation of the optimal value function, and 

 Lower, which uses 𝑉(𝑏) calculated using 𝜋𝐵𝑙𝑖𝑛𝑑 formed using the Blind algorithm 

(Hauskrecht, 2000) as another approximation of the optimal value function 

3.4.1.2. RockSample 

The second benchmark problem considered in our experimental setup is 

RockSample (Smith & Simmons, 2004).  In RockSample, an agent navigates a remote 

world represented by a 2D grid of size 𝑔 × 𝑔 to sample from 𝑘 rocks. The goal of the 

agent is to determine which rocks are good, then sample only those rocks.  Afterwards, 

the agent exits by moving to a special location off the grid.  To accomplish its goals, the 
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agent can perform 𝑘 + 5 actions: move in any of the four cardinal directions (North, 

South, East, West), check the quality at one of each of the 𝑘 rocks, or sample the rock at 

its current location.  To determine which actions to take, the agent considers a factored 

state space consisting of:  (1) its fully observable current location, and (2) the hidden 

quality of each rock (from the set {𝐺𝑜𝑜𝑑, 𝐵𝑎𝑑}). Checking a rock returns a noisy 

observation about the quality of the rock (also from the set {𝐺𝑜𝑜𝑑, 𝐵𝑎𝑑}), where the 

observation’s accuracy is greater the closer the agent is to the rock
10

.  Sampling a rock 

changes the state of the rock to 𝐵𝑎𝑑 (indicating it can no longer be sampled). The agent 

earns a reward of +10 for sampling a good rock, -10 for sampling a bad rock, and +10 for 

exiting the grid.  All other actions earn zero reward.  The agent’s discounted rewards are 

maximized by sampling all (and only) good rocks and exiting as fast as possible. 

We use the common setting 𝑔 = 7 and 𝑘 = 8 (e.g., Ross et al., 2008; Somani et 

al., 2013; Zhang & Chen, 2012) that results in a POMDP with 12,585 states, 13 actions, 

and 2 observations.  This problem is larger than Tag, but less dynamic: the problem 

always ends with the agent reaching the same state (exiting the grid), and the 

environment does not change as the agent moves around.  Thus, it presents a different set 

of challenges for time constrained planning, including a broader search tree (due to more 

possible actions) and deeper required activity to accomplish all the agent’s goals 

(sampling as many good rocks as exist in the environment), but identifying the goal state 

is less challenging, making it easier to achieve goal directed behavior.  

                                                           
10

 To increase the complexity of the RockSample benchmark and make it more suitable for our 

experimental study by making it a little more uncertain like the other benchmark problems considered in 

this research, we increased the uncertainty in the observations returned when checking rocks by decreasing 

the half-efficiency distance of sensing from 20 to 1.   This is similar to changes made in other experimental 

studies, including the similar FieldVisionRockSample considered in (Ross et al., 2008; Zhang & Chen, 

2012).  
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To improve online planning in RockSample, we consider 13 potential functions 

representing different domain-independent and -dependent knowledge pointing the agent 

to future rewards beyond the planning horizon.  Some are reused from Tag (Entropy, 

TopBelief, Upper, and Lower), whereas others are unique to RockSample: 

 ClosestDistance (CD), using domain-dependent information to assign greater potential 

to belief states closer to uncertain rocks where the agent will achieve greater accuracy 

and thus most immediate belief improvement: 

                                       𝜙(𝑏) = {
−

1

2𝑔
min𝑟∈𝑅[𝑑(𝑟, 𝑙) + 1]  if 𝑅 ≠ ∅

  0                                           if 𝑅 = ∅
     (3.15) 

where 𝑅 = {𝑟 | 0.01 < 𝑏(𝑟) < 0.99} is the set of rocks with uncertain quality, 𝑙 is the 

agent’s location, and 𝑑 measures Euclidian distance between 𝑟 and 𝑙. 

 NoExit, prioritizing beliefs reflecting more certain knowledge about rocks before 

exiting to avoid neglected sampling due to myopic planning  (similar to Eq. 3.8 example 

from Section 3.3.1): 

                                       𝜙(𝑏) = {
−1000      if 𝑅 ≠ ∅ ∧ 𝑙 = exit
  0                                          else

     (3.16) 

 ECD, which sums Entropy (Eq. 3.6) and ClosestDistance (Eq. 3.15) to combine 

domain-independent and domain-dependent information in the same potential function 

 TBCD, which sums TopBelief (Eq. 3.7) and ClosestDistance (Eq. 3.15) to also 

combine domain-independent and domain-dependent information in the same potential 

function 

 NoExitE, which sums Entropy (Eq. 3.6) and NoExit (Eq. 3.16) to combine domain-

independent information and belief prioritization in the same potential function 

 NoExitTB, which sums TopBelief (Eq. 3.7) and NoExit (Eq. 3.16) to also combine 

domain-independent information and belief prioritization in the same potential function 

 NoExitCD, which sums ClosestDistance (Eq. 3.15) and NoExit (Eq. 3.16) to combine 

domain-dependent information and belief prioritization in the same potential function 

 NoExitECD, which sums Entropy (Eq. 3.6), ClosestDistance (Eq. 3.15), and NoExit 

(Eq. 3.16) to combine domain-independent and domain-dependent information, as well as 

belief prioritization, in the same potential function 

 NoExitTBCD, which sums TopBelief (Eq. 3.7), ClosestDistance (Eq. 3.15), and 

NoExit (Eq. 3.16) to also combine domain-independent and domain-dependent 

information, as well as belief prioritization, in the same potential function 
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3.4.1.3. AUVNavigation 

The final benchmark problem considered in our experimental setup is 

AUVNavigation (Ong et al., 2010).  In AUVNavigation, a robotic submarine agent is 

randomly placed on one side of a 20 × 7 × 4 3D underwater grid and must navigate 

through a set of rock obstacles to either of two known goal locations on the other side of 

the grid. The agent can Stay in its current position, turn Left, Right, Up, or Down to 

change its orientation, or it can move Forward along its orientation towards a desired 

location.  Currents underwater also move the agent with low probability, resulting in 

stochastic location changes, whether or not the agent intended to move.  The agent has 

sensors that always perfectly observe the agent’s depth and orientation in the grid, but its 

location in the 2D plane is uncertain.  Thus, navigating through the rocks to reach the 

goal is quite challenging.  The agent can move to the surface of the water where it 

automatically uses a GPS sensor to perfectly determine its location, but this incurs a 

moderate cost of -50.  Otherwise moving through the grid incurs a penalty of -1, -1.44, or 

-1.73, depending on its orientation (with higher cost for moving diagonally and changing 

depths in the grid), whereas Staying or changing orientation earns zero reward.  The 

agent incurs a large penalty of -500 for hitting a rock and an even larger reward of +5000 

for reaching a goal location, each of which result in a terminal state that ends execution.  

The agent’s discounted rewards are maximized by reaching the goal location as fast as 

possible while minimizing costs incurred for spending time on the surface. 

Altogether, AUVNavigation represents a very challenging benchmark problem 

compared to the other two benchmarks.  Whereas the number of states and actions 

(13,537 and 6, respectively) in this problem is similar to RockSample, the number of 
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observations (144) is much greater, increasing the size of the POMDP and the breadth of 

the planning tree, and the uncertainty is also much greater due to the lack of full 

observability of the agent’s location.  Thus, AUVNavigation is the largest and most 

complex benchmark considered in our experiments.  Due to this uncertainty and 

complexity, AUVNavigation can be viewed as containing three sub-problems in three 

stages: (1) determining the agent’s location on the far side of the grid, (2) navigating 

through the many dangerous rock obstacles (requiring high certainty in the agent’s 

location), and (3) finding a path beyond the obstacles to one of the goal locations.  

Furthermore, the actual horizon for this problem is quite long and requires more memory 

than an agent can afford for full breadth planning (due to exponential growth in the 

planning tree), requiring over 20 actions just to move the agent from its initial location to 

a goal location without accounting for the number of actions required to resolve its initial 

location uncertainty.  Since a positive reward signaling a good planning path to the agent 

only occurs when it reaches the goal (after at least 20 steps), time constrained planning is 

very difficult in this domain since there are no intermediate positive signals to guide the 

agent towards the goal state.  As a result, PBRS is possibly a beneficial approach for this 

benchmark problem since potential functions can provide such intermediate positive 

signals, but the potential functions need to be able to account for the different stages of 

the problem to successfully guide the agent towards its goal, which could require more 

complex potential functions than the other two benchmark problems. 

To improve online planning in AUVNavigation, we consider eight potential 

functions representing different domain-independent and -dependent knowledge pointing 

the agent to future rewards beyond the planning horizon.  Some are reused from Tag and 
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RockSample (Entropy, TopBelief, Upper, and Lower), whereas others are unique to 

AUVNavigation: 

 GoalDistance (GD), using domain-dependent information to assign greater potential to 

belief states closer to the nearest of the two goal locations where the agent has less 

distance to travel (and further movement cost to incur) to reach its goal: 

                                                          𝜙(𝑏) =
1

𝐸[𝑑(𝑔,𝑙)]+1
    (3.17) 

where 𝑙 is a possible agent location, 𝑔 is the nearest goal location to 𝑙, 𝑑 measures 

Euclidian distance between 𝑙 and 𝑔 (equal to the maximum possible distance if 𝑙 is also a 

rock location to encourage the agent to avoid rocks), and 𝐸[𝑑(𝑔, 𝑙)] is the expected 

distance based on all possible agent locations in belief state 𝑏. 

 EGD, which sums Entropy (Eq. 3.6) and GoalDistance (Eq. 3.17) to combine domain-

independent and domain-dependent information in the same potential function 

 TBCD, which sums TopBelief (Eq. 3.7) and GoalDistance (Eq. 3.17) to also combine 

domain-independent and domain-dependent information in the same potential function 

 HighBeliefGoalDistance (HBGD), which combines prioritizing beliefs containing 

high certainty in a single state, reflecting more certain knowledge about the agent’s 

current location, and the domain-dependent information GoalDistance potential function 

(Eq. 3.17) to help the navigate towards a goal location after resolving its own location 

uncertainty: 

                              𝜙(𝑏) = {  
1

𝐸[𝑑(𝑔,𝑙)]+1
      if max𝑠∈𝑆 𝑏(𝑠) > 0.6

        0                                               else
     (3.18) 

3.5. Results 

In this section, we analyze the results of our experiments using the benchmark 

problems and potential functions outlined in the previous section and evaluate the 

empirical performance of using PBRS to improve online POMDP planning. 

Specifically, we evaluate performance by comparing the (infinite horizon) 

cumulative, discounted rewards earned by the agent while operating in each benchmark: 

                                                           ∑ 𝛾𝑡𝑟𝑡
𝑜𝑟𝑖𝑔∞

𝑡=0       (3.19) 

since this is the function the agent intends to optimize (even if it must rely on finite 

horizon approximations during planning) and is the traditional measure for evaluating 

POMDP planning.   Please note that this measurement does not include the additional 
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rewards from any potential function in order to provide a fair comparison between 

approaches with and without reward shaping.   

For PBRS, we performed full breadth planning using a randomized BFS 

expansion of the planning tree using different amounts of time 𝜏 for online planning 

representing different time constraints imposed on the agent’s reasoning
11

 (common to 

real-world environments):  𝜏 ∈ {5, 10, 50, 100} milliseconds for Tag and RockSample 

and 𝜏 ∈ {100, 500, 1000, 5000} milliseconds for the larger and more complex 

AUVNavigation.   

Within each benchmark, we compared for each amount of allotted time 𝜏 the 

performance of planning (1) without reward shaping (Original), (2) with reward shaping 

using different potential functions for each benchmark problem (summarized in Table 3.2 

and described above), (3) using AEMS2 (Ross & Chaib-draa, 2007), a state-of-the-art 

heuristic search algorithm, and (4) using ABDESPOT and ARDESPOT, two online 

variants of a state-of-the-art Monte Carlo tree search algorithm called DESPOT (Somani 

et al., 2013).  Any offline planning required by the algorithms is not included in 𝜏. 

Our results were averaged over 1000 runs of each problem for each planning 

approach and allotted time combination (except for AUVNavigation, where we only 

employed 100 runs due to its higher range of 𝜏 values).  To speed up computation in each 

benchmark, we used the state-of-the-art equivalent MOMDP
12

 representation (Ong et al., 

2010) for the POMDP model, as also done in the recent online POMDP planning 

                                                           
11

 We use a different range of allotted times 𝜏 for different problems due to the different sizes of the 

POMDPs, resulting in different exponential growth of the planning trees calculated by the agents. 
12

 A mixed observability MDP (MOMDP) is a special POMDP representation that factors the state space 

into fully observable variables 𝒳 and partially observable variables 𝒴, such that 𝑆 = 𝒳 × 𝒴, and exploits 

this factorization to simplify the transition and observation probability calculations to speed up 

computation.  The resulting model is equivalent (but faster) to the canonical, unfactored POMDP 

representation for the same problem (Ong et al., 2010). 
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literature (e.g., Zhang & Chen, 2012).  We limited each run to 200 time steps, which 

should be ample time for the agent to solve each problem (else the agent was acting 

randomly and not in a goal directed fashion, and thus would probably never accomplish 

its goal if left to run longer). 

Because we limited planning to fixed amounts of time, all experiments per 

benchmark were conducted on a fixed computer to avoid introducing variance into the 

results due to differences between computers, instead of due to differences in the 

algorithms’ performances that we intended to measure.  Two computers were chosen for 

this purpose: each possessing an Intel i5 (Haswell) 3.4 GHz Quad Core processor with 

8GB of RAM (limited to one thread and 3 GB of RAM per experiment run).  One 

computer ran all of the Tag and RockSample experiments, while the other ran the 

lengthier AUVNavigation experiments. 

In the following, we analyze performance in each of the benchmarks separately: 

first Tag, then RockSample, and finally AUVNavigation.  Afterwards, we provide 

discussions generalizing our results across benchmarks to provide a more abstract 

identification of the strengths and weaknesses of each approach to online planning, 

especially focusing on using PBRS. 

For each problem, we first compare the performance of full breadth planning with 

PBRS using the different potential functions against Original (i.e., full breadth planning 

without reward shaping) to explore whether or not the different types of potential 

functions truly provide implicit clues of what actions the agent should take to earn large 

cumulative, future rewards beyond the agent’s planning horizon.  Second, we compare 

the performances of each type of potential function to try to gain insights into which  
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Table 3.3: Results from Tag Benchmark Problem with 95% Confidence Intervals 

Approach 

𝝉 

5 ms 10ms 50ms 100ms 

Original -12.84 ± 0.55 -10.09 ± 0.54 -9.13 ± 0.51 -9.68 ± 0.50 

Entropy -12.47 ± 0.56 -10.64 ± 0.54 -11.41 ± 0.54 -9.57 ± 0.51 

TopBelief -13.60 ± 0.54 -10.37 ± 0.57 -9.79 ± 0.54 -10.07 ± 0.51 

MBD -9.73 ± 0.47 -7.77 ± 0.45 -7.77 ± 0.44 -7.23 ± 0.42 

EMBD -9.33 ± 0.44 -7.98 ± 0.45 -8.89 ± 0.46 -7.08 ± 0.42 

TBMBD -9.46 ± 0.47 -7.09 ± 0.42 -7.66 ± 0.43 -7.16 ± 0.39 

Upper -8.79 ± 0.44 -7.30 ± 0.41 -7.52 ± 0.40 -6.20 ± 0.39 

Lower -13.99 ± 0.55 -10.21 ± 0.51 -10.21 ± 0.52 -12.32 ± 0.54 

AEMS2 -6.40 ± 0.40 -5.65 ± 0.40 -5.75 ± 0.38 -5.78 ± 0.38 

ABDESPOT -15.54 ± 0.41 -12.16 ± 0.42 -7.36 ± 0.38 -6.57 ± 0.39 

ARDESPOT -14.94 ± 0.43 -12.36 ± 0.41 -7.03 ± 0.38 -6.61 ± 0.37 

might be most advantageous to improve agent planning.  Finally, we compare the 

performances of the best and worst potential functions (and Original) against the three 

depth-focused state-of-the-art online POMDP planning algorithms in order to determine 

how well our proposed approach compares to the best known approaches and to see what 

benefits we gain from maintaining full breadth planning with implicit estimations of 

future rewards. 

3.5.1. Tag Results 

3.5.1.1. Comparison of Full Breadth Planning With and Without Reward Shaping 

We begin our results analysis by comparing the performance of full breadth 

planning with (PBRS) and without (Original) reward shaping on the Tag benchmark 

problem to discover the benefits of implicitly estimating future rewards without explicit 

calculations. We present in Table 3.3 the cumulative, discounted reward results earned by 

the agent on this benchmark for each solution.   

From these results, we make several important observations.  First, the majority of 

the potential functions resulted in improved performance across the various planning 

horizons when compared to breadth-first planning without reward shaping (Original): 18 
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of 28 (64.3%) potential function and time constraint pairs yielded higher cumulative 

reward in Tag.  Indeed, several of the potential functions (MBD, EMBD, TBMBD, and 

Upper) even achieved quite significant improvements over full breadth planning with no 

reward shaping: improvements of 31.5%, 29.7%, 17.6%, and 36.0% in cumulative reward 

across the four different time constraints for planning (𝜏 = 5, 10, 50, 100 ms), 

respectively.  Moreover, the best potential functions (MBD, EMBD, TBMBD, Upper) led 

to better performance with only 10 ms of planning time, compared with employing an 

order of magnitude more time for planning (up to 100 ms) with Original.  Thus, reward 

shaping can yield improved performance while using even less planning time. 

Overall, we conclude from these results that using PBRS to shape rewards with 

potential functions often resulted in better planning and subsequent performance by the 

agent through considering implicit estimates of future rewards, as intended.   So, we 

have evidence that using potential functions is a good approach for improving the quality 

of plans formed during full breadth planning. 

However, not every potential function achieved better performance than Original.  

Namely, the Entropy, TopBelief, and Lower potential functions achieved worse (or 

similar) performance on many of the time constraints used for planning.  Thus, we have 

evidence that not every potential function (or indicator of future rewards) is beneficial to 

planning, and care must be taken when choosing an appropriate potential function for the 

agent’s problem.  In the next subsection, we will investigate further why these potential 

functions might have been a bad choice on Tag, and we will provide a more general 

discussion on this topic in Section 3.5.4. 



www.manaraa.com

 
 

92 

3.5.1.2. Comparison Between Potential Function Types 

Next, we try to better understand the differences between the performances 

resulting from each of the potential function types on the Tag benchmark problem.  From 

the results in Table 3.3, we observe that the domain-dependent information (from 

expected state-based potential functions, Type 1) (MBD) generally outperformed the 

domain-independent information (from measures of the quality of agent knowledge, Type 

2) potential functions (Entropy, TopBelief) independently.  Considering the fact that 

Type 1 potential functions on POMDPs are a direct extension of the type of potential 

functions used elsewhere in the literature, we find that utilizing this extension is in fact 

still beneficial in POMDPs.  On the other hand, combining the two types (Type 1 and 2 in 

the EMBD and TBMBD potential functions) generally resulted in better performance 

than either type alone.  Therefore, we observe an added benefit of considering different 

types of potential functions, including those novel to POMDPs and proposed in this 

research (Type 2).    In other words, the types of information provided by both form a 

stronger indicator or estimator of cumulative, future rewards the agent will earn from the 

belief states with higher potential under these functions. 

The approximations of the optimal value function (Type 4 potential functions, 

commonly used in leaf evaluation heuristics), on the other hand, provided mixed results.  

On the one hand, the Upper bound approximation (from FIB (Hauskrecht, 2000)) 

outperformed Original and was the best potential function overall with the greatest 

performance amongst potential functions for three of the four planning times considered 

(𝜏 = 5, 50, 100 ms).  On the other hand, the Lower bound approximation (from Blind 

(Hauskrecht, 2000)) was one of the worst performers of all potential functions, regardless 
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of the amount of planning time allotted.  Thus, this particular potential function 

(commonly used in practice as a leaf evaluation heuristic (e.g., Ross et al., 2008) is 

possibly not as good of a choice as other types of information for guiding agent action 

selection, at least on the Tag benchmark. 

3.5.1.3. Comparison of PBRS with Depth-Focused, State-of-the-Art Planning 

Algorithms 

Now, we compare full-breadth planning with and without PBRS against the three 

state-of-the-art algorithms—AEMS2 heuristic search, as well as ABDESPOT and 

ARDESPOT MCTS algorithms.  Our goal is to determine whether maintaining full 

breadth planning with implicit estimations of future rewards is beneficial in comparison 

to depth-focused approaches that explicitly calculate the cumulative, future rewards the 

agent intends to maximize.  For this analysis, we plot in Figure 3.1 the performance as 

planning time increased for the best (Upper) and worst (Lower) potential functions, as 

well as Original and the state-of-the-art algorithms. 

From these results, we first observe that full breadth planning (with and without 

reward shaping) was advantageous for the smallest amounts of planning time (𝜏 = 5, 10 

ms) in comparison to the MCTS algorithms.  This was due to the depth-focused MCTS 

algorithms not having enough time to find a path of actions to the agent’s goal using 

biased random sampling (and thus suffered from the problems of sacrificing breadth 

without gaining the benefits of focusing on depth during planning).  In fact, for these 

amounts of planning time, the MCTS algorithms had the worst overall planning 

performance on this benchmark (as seen in Table 3.3).   

Moreover, as planning time increased, the best potential function (Upper) 

remained competitive with the MCTS algorithms as their performance increased (for  
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Figure 3.1: Performance of Planning Algorithms as Planning Time Increased on the 

Tag Benchmark Problem for Select Approaches 

MCTS, due to better depth-focused planning with more planning time).  These results 

imply that maintaining breadth-focused planning enhanced by implicit estimates of large 

future rewards achieved close performance to good explicit estimates of cumulative, 

future rewards.  Therefore, implicit estimates can be as useful in at least some domains 

(like Tag) as explicitly calculating those rewards (under limited time constraints for 

planning
13

).   

However, the best state-of-the-art algorithm (AEMS2 heuristic search) 

outperformed the best potential function (Upper).  Here the PBRS performance was not 

quite as good, indicating for the Tag benchmark, depth-focused planning providing 

explicit cumulative, reward estimates was still the best approach for planning.  That is, 

the heuristic used by AEMS2 (based on error bounds in Upper and Lower bounds in 

agent rewards and optimistically biased towards Upper bound rewards) indeed selected 

appropriate belief states to expand during planning.  Therefore, implicit future reward  

                                                           
13

 Without time constraints, explicit calculations would always be superior because the agent could simply 

continue planning deeper throughout the entire planning tree.  But with time constraints, the agent must of 

course sacrifice some breadth for depth, causing under- or over-estimations of agent rewards for some 

belief states, as discussed in Section 3.2.2. 
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Table 3.4: Results from RockSample Benchmark Problem 

 with 95% Confidence Intervals 

Approach 
𝝉 

5 ms 10 ms 50 ms 100 ms 

Original 7.66 ± 0.30 9.19 ± 0.33 11.60 ± 0.35 12.47 ± 0.36 

Entropy 4.35 ± 0.35 7.07 ± 0.36 10.23 ± 0.33 11.62 ± 0.35 

TopBelief 8.11 ± 0.31 9.46 ± 0.33 11.68 ± 0.34 12.46 ± 0.35 

CD 10.91 ± 0.33 11.45 ± 0.33 12.14 ± 0.34 12.19 ± 0.34 

ECD 10.75 ± 0.49 12.02 ± 0.46 12.78 ± 0.37 13.91 ± 0.37 

TBCD 10.71 ± 0.32 11.62 ± 0.33 11.98 ± 0.34 12.24 ± 0.34 

NoExit 7.28± 0.30 8.41 ± 0.32 10.95 ± 0.38 11.82 ± 0.38 

NoExitE 4.09 ± 0.33 6.29 ± 0.34 9.76 ± 0.34 11.16 ± 0.36 

NoExitTB 7.97 ± 0.31 9.83 ± 0.35 12.74 ± 0.39 13.97 ± 0.40 

NoExitCD 11.69 ± 0.36 12.16 ± 0.35 13.05 ± 0.37 13.47 ± 0.37 

NoExitECD 11.16 ± 0.54 13.76 ± 0.50 14.57 ± 0.39 16.08 ± 0.40 

NoExitTBCD 11.97 ± 0.36 12.73 ± 0.35 13.92 ± 0.38 14.13 ± 0.38 

Upper 11.24 ± 0.36 11.16 ± 0.34 8.41 ± 0.31 16.38 ± 0.41 

Lower 7.63 ± 0.09 8.15 ± 0.16 12.09 ± 0.31 14.31 ± 0.33 

AEMS2 8.35 ± 0.17 14.07 ± 0.33 15.45 ± 0.35 16.41 ± 0.37 

ABDESPOT 14.63 ± 0.35 14.71 ± 0.36 13.36 ± 0.39 16.13 ± 0.44 

ARDESPOT 14.53 ± 0.18 14.71 ± 0.18 14.22 ± 0.20 16.50 ± 0.21 

estimations are not always as good as explicit calculations, even with limited time 

constraints and having to sacrifice breadth to achieve such depth during planning. 

3.5.2. RockSample Results 

3.5.2.1. Comparison of Full Breadth Planning With and Without Reward Shaping 

We continue our results analysis by comparing the performance of full breadth 

planning with (PBRS) and without (Original) reward shaping on the RockSample 

benchmark problem so that we can gain additional insights into the benefits of implicitly 

estimating future rewards without explicit calculations. We present in Table 3.4 the 

cumulative, discounted reward results earned by the agent on this benchmark for each 

solution.  

As in the Tag benchmark problem, we again observe that many of the potential 

functions resulted in improved performance across the various time constraints on 

planning when compared to full breadth planning without reward shaping (Original): 34 
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of 52 (65.4%) potential function and time constraint pairs yielded higher reward in 

RockSample.  Therefore, we have additional evidence that implicit estimators of 

cumulative, future rewards can improve full breadth planning. 

Interestingly, the majority of these improved performances occurred for the three 

smallest amounts of time allotted for planning (𝜏 = 5, 10, 50 ms) where 27 of 39 (69.2%) 

potential function and time constraint pairs yielded higher cumulative reward than 

Original.  This observation supports Remark 3.3 (c.f., Section 3.3.2) that PBRS can be 

most beneficial when the amount of time allowed for planning is smallest. 

For the largest amount of planning time, on the other hand, less than half of the 

potential functions (ECD, NoExitTB, NoExitCD, NoExitECD, NoExitTBCD, Lower) 

outperformed Original.  This again indicates that planning with PBRS is not beneficial 

with any potential function and can be less useful as time constraints are reduced (i.e., 

there is more time for planning and less need for implicit estimators of rewards beyond 

the planning horizon). 

3.5.2.2. Comparison Between Potential Function Types 

Comparing between potential function types, we make many of the same 

observations for the RockSample as we did for the Tag benchmark in Section 3.5.1.2: 

domain-dependent information (Type 1, CD) potential functions generally outperformed 

domain-independent information (Type 2, Entropy and TopBelief) individually.  Indeed, 

the Entropy potential function yielded some of the worst performances amongst all 

approaches used in our experimental study.  Upon further investigation, this was due to 

this potential function leading the agent to overly conservative behavior by sensing too 

frequently to reach overly high confidence values before sampling rocks, resulting in less 
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efficient behavior than the other approaches.  However, together potential function Types 

1 and 2 (especially ECD) perform better than either member type alone.  Again, this 

demonstrates the advantages of exploiting information only available in POMDPs (Type 

2 potential functions), and not in fully observable settings, as previously studied.   

Furthermore, we also observe that our other proposed novel type of potential 

function—belief prioritization (Type 3)—also does not perform as well on its own as 

some of the other types, but combining Types 1, 2, and 3 yielded the best performance 

amongst all potential function types.  In particular, planning with the NoExitECD 

potential function had the best performance amongst all potential functions.  Thus, like 

Type 2, this third type of potential function (also novel to POMDPs and introduced by 

this research) is a beneficial form of metareasoning for the agent within a POMDP 

planning framework, but requires other types of information (especially domain-specific 

information measured in Type 1 potential functions) to best improve agent planning. 

Finally, as in the Tag benchmark problems, the approximations of the optimal 

value function (Type 4, commonly used as leaf evaluation heuristics) provided mixed 

results.  Whereas the Upper bound (calculated using FIB (Hauskrecht, 2000)) again 

generally provided improved behavior, the Lower bound potential function also led to 

lower performance than planning without reward shaping (Original) for the lowest time 

constraints on planning (𝜏 = 5, 10 ms).  Thus, potential functions of the type commonly 

used for leaf evaluation heuristics still provided some benefit on this problem, but was 

less beneficial overall than other potential function types providing other indicators of 

which belief states yield high cumulative, future rewards. 
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Figure 3.2: Performance of Planning Algorithms as Planning Time Increased on the 

RockSample Benchmark Problem for Select Approaches 

3.5.2.3. Comparison of PBRS with Depth-Focused, State-of-the-Art Planning 

Algorithms 

To better understand the relative performance of PBRS performing full breadth 

planning with implicit estimation of cumulative, future rewards against depth-focused 

state-of-the-art algorithms on the RockSample benchmark problem, we plot in Figure 3.2 

the performance as planning time increased for the best (NoExitECD) and worst 

(NoExitE) potential functions, as well as Original and the state-of-the-art online POMDP 

planning algorithms.   

From these results, we observe that for each planning time, full-breadth planning 

with the NoExitECD potential function performed favorably to the three state-of-the-art, 

depth-focused planning algorithms.  Namely, NoExitECD outperformed the state-of-the-

art heuristic search algorithm AEMS2 for the most constrained amount of planning time 

(𝜏 = 5 ms) and the state-of-the-art Monte Carlo search DESPOT algorithms as planning 

time increased (𝜏 = 50 ms), and was comparable to the state-of-the-art algorithms for the 

other planning times.  This is a very interesting result because unlike in the Tag 

benchmark problem, Table 3.4 shows that in RockSample all of the depth-focused 
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approaches—the heuristic search algorithm (AEMS2) and the MCTS algorithms 

(ABDESPOT, ARDESPOT)—generally outperformed full-breadth planning (especially 

compared to Original), even for the lowest amounts of planning time.  Thus, in this 

particular problem, depth-focused planning appears to generally be a better approach than 

full-breadth planning.  However, the indicators of future rewards measured by 

NoExitECD (combining both a Type 1 potential function as commonly used elsewhere in 

the PBRS literature, as well as our novel Type 2 and 3 potential functions exploiting 

metareasoning about agent knowledge and histories) sometimes led the agent to select 

better actions using implicit estimates of cumulative, future rewards instead of spending 

time explicitly calculating such rewards with depth-focused planning.  Combined with 

the Tag benchmark results, this is additional evidence that using the novel types of 

potential functions for planning is very advantageous for improving agent performance in 

partially observable environments. 

3.5.3. AUVNavigation Results 

3.5.3.1. Comparison of Full Breadth Planning With and Without Reward Shaping 

Finally, we evaluate the results from the most complicated AUVNavigation 

benchmark, where time constrained planning is generally very difficult without some 

estimations of future rewards along very deep planning paths due to the long sequence of 

actions required to reach the goal state (which is the only state to provide positive reward 

to guide planning).  As before, we begin our analysis of the results from this benchmark 

by comparing the performance of full breadth planning with (PBRS) and without 

(Original) reward shaping to evaluate the benefits of implicitly estimating future rewards  
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Table 3.5: Results from AUVNavigation Benchmark Problem  

with 95% Confidence Intervals 

Approach 

𝝉 

100 ms 500 ms 1000 ms 5000 ms 

Original -7.41 ± 7.69 -6.63 ± 7.59 -5.19 ± 6.81 -5.02 ± 6.75 

Entropy -76.41 ± 41.76 -598.67 ± 38.01 -549.19 ± 26.55 -262.52 ± 26.80 

TopBelief -511.67 ± 49.07 -609.74 ± 22.39 -525.84 ± 25.62 -291.15 ± 66.50 

GD 0.81 ± 18.00 359.86 ± 77.31 366.83 ± 82.00 480.05 ± 101.04 

EGD -218.20 ± 77.21 -35.91 ± 78.78 -40.80 ± 67.10 18.10 ± 101.97 

TBGD -671.25 ± 16.43 -602.84 ± 29.89 -505.37 ± 33.08 -580.47 ± 49.34 

HBGD 63.53 ± 109.08 552.01 ± 92.95 542.61 ± 76.10 443.69 ± 96.62 

Upper -15.16 ± 9.25 -16.23 ± 9.24 163.77 ± 70.62 156.81 ± 74.42 

Lower -4.70 ± 6.59 -4.72 ± 6.59 -4.75 ± 6.59 -2.43 ± 1.77 

AEMS2 -4.71 ± 6.59 -4.69 ± 6.59 -1.42 ± 0.65 -4.42 ± 6.56 

ABDESPOT 305.69 ± 107.45 458.08 ± 110.50 323.94 ± 86.37 391.94 ± 80.89 

ARDESPOT 32.81 ± 40.97 57.82 ± 40.19 82.30 ± 42.89 403.04 ± 80.78 

without explicit calculations. We present in Table 3.5 the cumulative, discounted reward 

results earned by the agent on this benchmark for each solution. 

In AUVNavigation, we observe far different results than in the simpler Tag and 

RockSample benchmarks.  At first glance, PBRS often appears to have resulted in worse 

performance than planning without reward shaping (Original): 17 of 32 (53.1%) of the 

potential function and time allocation pairs resulted in worse performance than planning 

without reward shaping. 

However, upon deeper investigation, these results are a consequence of an 

interesting quirk in the reward function optimized by the agent, rather than truly worse 

performance when using PBRS.  In particular, recall that the agent received zero penalty 

for either doing nothing with the Stay action or for changing its orientation (using the Up, 

Down, Left, and Right actions).  Otherwise, the agent received a small penalty for 

moving using the Forward action.  Thus, for time constrained full breadth planning 

without PBRS, the agent rarely calculated any benefit to moving Forward and instead 

chose actions that yielded zero reward (and thus no cost).  As a result, the agent without 

PBRS never reached the goal location and sat aimlessly, sometimes eventually drifting 



www.manaraa.com

 
 

101 

into a rock (due to the dynamic currents underwater), resulting in a penalty of -500.  

Thus, the cumulative, discounted rewards earned by the agent without PBRS were close 

to 0 (any penalty of -500 occurred after many steps and was heavily discounted) and 

identical across all amounts of time allowed for planning.  Therefore, planning without 

PBRS resulted in random, uneventful behavior (stuck in Stage 1 of the problem, c.f. 

Section 3.4.1.3) and not goal-directed behavior, as necessary (c.f., Section 3.4.1.3). 

On the other hand, for the agents with potential functions using PBRS, the agent 

received incentive for moving Forward from its shaped rewards, thereby incurring 

negative costs for movement.  As a result, the agent usually achieved worse cumulative, 

discounted rewards, but more goal-directed behavior.  In particular, the potential 

functions combining domain-dependent and domain-independent information (EGD, 

TBGD) chose actions that successfully completed Stage 1 (uncertainty reduction) and 

Stage 2 (navigating through the rock obstacles) of the problem, but incurred large costs (-

50 per step) by moving along the surface of the water, where the agent always updated its 

location with perfect accuracy.  Thus, including potential functions resulted in better 

behavior towards goal accomplishment than full breadth planning without reward shaping 

(Original), due to supplying required intermediate positive signals that allowed the agent 

to find a plan within time constrained planning that lead the agent towards the goal state. 

To better evaluate goal achievement in the challenging AUVNavigation 

benchmark problem, we present in Table 3.6 the proportion of the 100 runs in which the 

agent successfully reached a goal location. From these results, we observe that planning 

with PBRS was much more successful: 18 of 32 (56.3%) of the potential function and 

horizon pairs resulted in more goal achievement than planning without PBRS (Original),  



www.manaraa.com

 
 

102 

Table 3.6: Proportion of AUVNavigation Runs Successfully Ending at a  

Goal Location with 95% Confidence Intervals 

Approach 

𝝉 

100 ms 500 ms 1000 ms 5000 ms 

Original 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Entropy 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

TopBelief 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

GD 0.01 ± 0.02 0.82 ± 0.08 0.89 ± 0.06 0.88 ± 0.06 

EGD 0.78 ± 0.08 0.88 ± 0.06 0.86 ± 0.07 0.87 ± 0.07 

TBGD 0.01 ± 0.02 0.20 ± 0.08 0.18 ± 0.08 0.25 ± 0.09 

HBGD 0.75 ± 0.09 0.87 ± 0.07 0.92 ± 0.05 0.90 ± 0.06 

Upper 0.00 ± 0.00 0.00 ± 0.00 0.33 ± 0.09 0.33 ± 0.09 

Lower 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

AEMS2 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

ABDESPOT 0.49 ± 0.10 0.65 ± 0.09 0.59 ± 0.10 0.76 ± 0.08 

ARDESPOT 0.30 ± 0.09 0.49 ± 0.10 0.57 ± 0.10 0.75 ± 0.09 

whereas PBRS never performed worse, regardless of the potential function used.  Thus, 

we also find evidence in very complicated environments that potential functions can 

produce improved planning in a full breadth scenario using implicit estimations of 

cumulative, future rewards. 

3.5.3.2. Comparison Between Potential Function Types 

In particular, potential functions combining domain-dependent location 

information (for rock obstacle avoidance and movement towards the goal in Stages 2 and 

3 using Type 1 potential function information) with either domain-independent 

information (for encouraging belief improvement in Stage 1 using Type 2 potential 

function information) (EGD, TBGD) or belief prioritization (also prioritizing belief 

improvement in Stage 1 using Type 3 potential function information) (HBGD) achieved 

much better performance than planning without PBRS.  Domain-dependent location 

information (Type 1) also performed very favorably to planning without PBRS, although 

not quite as well as adding metareasoning by combining Type 1 with Type 2 or Type 3 

potential functions.  Overall, this level of performance is quite significant since 
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successful time constrained planning is generally incredibly difficult for such a complex 

problem!  

Moreover, for each successful potential function, performance often increased as 

the planning horizon increased, with HBGD eventually achieving the goal in nearly all 

(92%) runs. Therefore, planning with PBRS was also very beneficial in AUVNavigation, 

and was able to guide the agent to goal achievement even with time constrained planning 

in a very complex domain – containing multiple stages with different objectives and long 

sequences of actions required to reach the goal state – so long as the potential function 

considered adequate information to guide the agent through the complex domain (here, 

combinations of information about domain-dependent location and domain-independent 

certainty or belief prioritization). 

Interestingly, potential functions based on approximations of the optimal value 

function (Upper, Lower) were not as beneficial in this domain (although Upper did 

improve performance for the two largest amounts of planning time considered, 𝜏 =

1000, 5000 𝑚𝑠).  This is a direct consequence of the complexity of the domain, causing 

the upper and lower bounds on the value function 𝑉(𝑏) and 𝑉(𝑏) from Fast Informed 

Bound and Blind (Hauskrecht, 2000) to be quite loose (ranging from over 2000 to less 

than 0 for most belief states), not helping agent performance (as previously observed in 

Tag). 

3.5.3.3. Comparison of PBRS with Depth-Focused, State-of-the-Art Planning 

Algorithms 

As a final analysis, in order to better understand the relative performance of full 

breadth planning with PBRS on the AUVNavigation benchmark problem against depth-

focused state-of-the-art approaches, we plot in Figure 3.3 the performance as planning  
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Figure 3.3: Performance of Planning Algorithms as Planning Time Increased  

on the AUVNavigation Benchmark Problem for Select Approaches 

 
Figure 3.4: Proportion of AUVNavigation Runs Successfully Ending at a  

Goal Location as Planning Time Increased for Select Approaches 

time increased for the best (HBGD) and worst (TBGD on rewards, Entropy on proportion 

of successful runs) potential functions, as well as Original and the state-of-the-art online 

POMDP planning algorithms.  We also plot in Figure 3.4 the proportion of runs 

successfully ending at the goal location as a function of planning time and approach. 

From these figures, we again observe very successful performance by PBRS with 

the best potential function:  HBGD achieved the highest discounted, cumulative rewards 

in all but the lowest amount of time for planning (𝜏 = 100 ms) and the highest proportion 

of goal achievement across all planning times.   This is a very interesting result as on the 
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one hand, AUVNavigation requires long sequences of actions to accomplish its goal, so 

depth-focused planning approaches like AEMS2 or the MCTS algorithms (ABDESPOT, 

ARDESPOT) should have an inherent advantage.  However, because the required 

sequences are so long (more than 20 actions to find positive future rewards), even depth-

focused planning could not find a path from the agent’s starting belief state to the goal 

location under time constrained planning.  Instead, such depth-focused approaches 

wasted time exploring down paths that earn higher intermediate rewards (either not 

incurring costs for moving forward, or moving along dangerous routes on the bottom of 

the grid near rocks without incurring high cost at the surface for determining the agent’s 

true location), causing it to waste time planning down paths of overestimated value and 

underestimating the value of the truly best action sequences (that were either unexplored 

or under sampled during planning).  PBRS with the HBGD, on the other hand, followed 

an indicator of high future rewards beyond what depth-focused planning could achieve 

under such limited time constraints, and also performed full breadth planning to 

minimize the risk of following a wrong path initially in the planning tree in order to avoid 

underestimating the value of the best action sequences, to solve this particular problem.  

Therefore, full breadth planning with PBRS is very beneficial over state-of-the-art 

approaches on the type of problem represented by the AUVNavigation benchmark: 

agents suffering from high uncertainty and requiring long action sequences to find 

positive future rewards. 

Interestingly, the AEMS2 heuristic search algorithm that performed so admirably 

on the other two benchmark problems (generally better than MCTS and at least 

competitive with the best potential function using PBRS) performed very poorly on 
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AUVNavigation.  Like full breadth planning without reward shaping (Original), the agent 

never accomplished the goal and generally had random, non-goal directed behavior when 

planning with AEMS2 for all amounts of time allocated for planning.  Unlike in Tag, in 

this problem, the heuristic used in AEMS2 was not informative for choosing how to best 

expand the agent’s plan and led to many bad paths and wasted planning time, making it 

unable to achieve the expected benefits of depth-focused planning, resulting in closer 

behavior to full breadth planning without implicit estimations of cumulative, future 

rewards (and similar overall performance to such a planner, Original).  Specifically, on 

this benchmark, the Upper bound rewards (calculated using FIB (Hauskrecht, 2000)) 

guided the agent as if it had near certain knowledge of the true state of the environment 

(namely, its current location), but this biased the agent to explore actions maximizing 

agent rewards under such conditions (namely, attempting to navigate through the rocks).  

In turn, this led the agent away from exploring action sequences that achieved Stage 1 of 

the problem (determining the agent’s location), and thus left the agent ultimately 

confused on how to act since its uncertainty was never actually resolved. 

3.5.4. Discussion 

Considering our results across all three benchmark problems, we now draw some 

general conclusions about the benefits and drawbacks of using PBRS to improve online 

POMDP planning.  Overall, we empirically discovered from our experimental results that 

in general, PBRS can be very beneficial to online planning for POMDPs.   

First, more often than not, the potential functions employed led to better 

performance than similar full breadth planning without reward shaping, demonstrating 

that implicit estimations of cumulative, future rewards (indicated by different types of 
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information) indeed can improve the quality of plans and subsequent action selection in a 

wide range of environments.  Thus, PBRS is beneficial to consider in environments 

where full breadth planning might be useful and still gain some of the benefits of depth-

focused planning without having to spend the computational costs to explicitly calculate 

cumulative, future rewards, such as environments where the agent must take care to 

avoiding reaching dangerous or undesirable situations with no forethought on what to do 

or how to reach a better situation in order to eventually achieve its goals, as discussed in 

Section 3.1. 

Second, we also gained insights into which types of information measured by 

potential functions are most beneficial to improve agent action selection.  In each of the 

three benchmarks, we observed that domain-dependent information (Type 1, often in the 

form of goal-directed movement for agents in grid-worlds like our three benchmarks), 

yielded better performance than either of the two novel types of potential functions 

proposed in this chapter exploiting properties unique to POMDPs: both domain-

independent information providing metareasoning about agent knowledge (Type 2), or 

belief prioritization providing metareasoning about histories of agent interaction with the 

environment (Type 3).  However, we also observed in each environment that combining 

these types of potential functions yielded some of the best performances of any potential 

function type when using these types together, allowing metareasoning from Type 2 and 

Type 3 to boost performance beyond that achieved by Type 1 alone.  Specifically, 

combinations such as NoExitECD combining Type 1 + Type 2 + Type 3 in RockSample, 

and HBGD combining Type 1 + Type 3 in AUVNavigation produced the best 

performances across all potential functions (and generally across almost all considered 
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approaches to online planning), and EMBD and TBMBD combining Type 1 + Type 2 in 

Tag also performed well.  However, approximations of optimal value functions (Type 4), 

commonly used as leaf evaluation heuristics, resulted in more mixed results.  On the one 

hand, considering an approximation of the Upper bound on the value function (using FIB 

(Hauskrecht, 2000)) as a potential function led to the best results on Tag and moderately 

good results on RockSample and AUVNavigation.  On the other hand, considering an 

approximation of the Lower bound on the value function (using Blind (Hauskrecht, 

2000), which is also used in some online POMDP planning algorithms as a leaf 

evaluation heuristic, e.g., Ross et al., 2008), generally led to some of the worst 

performances and occasionally worse than full breadth planning without PBRS 

(Original).  Overall, we conclude that metareasoning about agent knowledge (using 

standard measures of certainty like Entropy or TopBelief, Eqs. 3.6-3.7, Type 2) and/or 

about histories of agent interactions with the environment (belief prioritization, Type 3) 

combined with any available domain-specific information (e.g., distances to goals, 

whether measured in a grid space or in some other fashion as observed by Ng et al. 

originally (1999)) was generally the most beneficial type of potential functions to use for 

PBRS with online POMDP planning.  Thus, we recommend starting with such 

combinations when trying to identify how to best use PBRS on a new POMDP problem.  

Given that standardized measures exist for Type 2, this hopefully only requires 

identifying relevant domain-specific information to improve planning, which is already a 

requirement for PBRS use in any domain, since domain-specific information is generally 

the only type of information previously considered in the PBRS literature. 
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Finally, in comparison to three depth-focused state-of-the-art online POMDP 

planning algorithms: the AEMS2 heuristic search algorithm (Ross & Chaib-draa, 2007) 

and the DESPOT MCTS algorithms (Somani et al., 2013), we also observed that full 

breadth planning using PBRS led to very favorable agent performance.  On the largest 

and most complicated benchmark problem (AUVNavigation), the best potential function 

(combining Types 1 and 3 for domain-specific information and metareasoning about 

histories) outperformed each of the state-of-the-art algorithms for most of the allotted 

times for planning considered as our time constraints.  On the other two benchmarks (Tag 

and RockSample), the best heuristic (Type 4 using approximations of the Upper bound on 

the value function for Tag, and combining Types 1, 2, and 3 for domain-specific 

information and metareasoning about agent knowledge in RockSample) also 

outperformed at least one of the state-of-the-art algorithms for some of the amounts of 

time allotted for planning, and was generally competitive on the rest.  Thus, it appears 

overall that some combination of metareasoning (novel to POMDP applications of 

PBRS) and domain-specific information often provides good enough implicit estimations 

(or signal indicators) of cumulative, future rewards to allow the agent to save time from 

not explicitly calculating such estimations through depth-focused planning, enabling 

more time for full breadth planning to avoid the potential pitfalls identified in Section 3.1 

from a lack of breadth in planning.  Especially noteworthy is that such potential function 

types do not require precomputation and generally scale well with the size of the 

POMDP, unlike Type 4 (representing domain information also used by the state-of-the-

art algorithms, as explained in the following paragraph), which can be prohibitively 

expensive to calculate in large POMDPs (especially those with very large state spaces).  
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Therefore, metareasoning with PBRS might be even more advantageous in even larger 

planning problems, which we intend to explore in the future (noting again that it already 

performed the best in our largest, most complicated problem: AUVNavigation). 

Although PBRS does add some (domain-specific or domain-independent) 

information to the agent’s planning in addition to the original reward function 𝑅, this is 

similar to the behavior of the state-of-the-art algorithms.  Namely, state-of-the-art 

heuristic search algorithm AEMS2 and the state-of-the-art Monte Carlo search DESPOT 

algorithms each consider upper 𝑉 and lower bounds 𝑉 on the value function, which are 

either precalculated offline (e.g., using the FIB or Blind algorithms (Hauskrecht, 2000)) 

or are calculated directly on the agent’s belief state, just like our proposed potential 

functions.  These bounds then indirectly provide the agent with information about its 

domain that further inform its evaluation of policies while planning.  For example, in 

RockSample, the bounds inform the agent about the locations of rocks, as these are the 

only locations where the largest positive cumulative rewards exist.  Likewise, in 

AUVNavigation, these bounds inform the agent about the locations of obstacles and the 

goals as these are the only locations where the upper bound on the value function and the 

immediate reward are equal (since both types of locations are terminal locations).  

Instead, our potential function framework provides a principled, mathematical vehicle for 

considering additional types of information to inform policy evaluation during finite 

horizon planning with several established theoretical results.  The goal of this research is 

not necessarily to produce a best new planning algorithm that is superior to all state-of-

the-art algorithms, but instead: (1) to provide such a vehicle for embedding additional 

domain-specific or domain-independent information to further improve online planning 
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for POMDPs, and (2) to explore what types of such information may or may not be 

useful across different types of planning problems.  Identifying valuable types of 

information could then even be used to create better heuristic search algorithms and 

further improve the state-of-the-art in online POMDP planning. 

However, PBRS is not an approach that works with any potential function and on 

any problem, as it is possible for a potential function to bias policy evaluation in a bad 

way.  Based on our results, we conclude that some forethought is certainly necessary to 

identify a good potential function for a particular problem.  One necessary component of 

a good potential function appears to be domain-specific information leading the agent 

towards its ultimate goal (e.g., distances in grid-based worlds).  In environments where 

such domain expertise is difficult to encode or unknown, PBRS might not be a good 

choice, as this type of information was generally a prerequisite for the combinations that 

yielded the best performance, competitive with depth-focused state-of-the-art online 

POMDP planning algorithms.  Indeed, considering the other components (Type 2 and/or 

3 metareasoning) individually generally hurt agent performance (compared to full 

breadth planning without reward shaping).  In the future, we intend to explore additional 

types of problem domains where these types of potential functions might be more useful, 

which we suspect might include (1) environmental monitoring applications (e.g., sensor 

tracking) where the agent’s sole goal is to have high belief certainty, making potential 

functions of Type 2 more useful alone, as well as (2) problems with multiple subtasks 

required to complete the agent’s ultimate task, where belief state prioritization (potential 

function Type 3) might be more useful to identify general strategies for accomplishing 

subtasks individually.  
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Furthermore, we note that the complexity of potential functions necessary for 

improving planning increases with the complexity of the problem modeled by the 

POMDP.  That is, in the challenging AUVNavigation problem, simple linear 

combinations of different types of potential functions were less effective in improving 

agent performance than in the simpler Tag and RockSample domains. Instead, we had to 

rely on a more complicated combination of belief prioritization (Type 3) and domain-

dependent expected state-based potential (Type 1)—HBGD—in order to best guide the 

agent through the three subproblems represented by different stages in order to maximize 

goal achievement and cumulative, discounted rewards. However, even in complex 

AUVNavigation, simple linear combinations of potential functions still yielded 

significant improvements in agent performance compared to both full-breadth planning 

without PBRS (Original) and at least some of the state-of-the-art online planning 

algorithms.  Furthermore, for the simpler benchmark problems (which are still reasonably 

complex with up to tens of thousands of states, c.f., Section 3.4.1), linear combinations of 

different types of simple potential functions resulted in significantly improved planning, 

demonstrating that even simpler potential functions can still boost planning performance. 

Moreover, potential functions in complex domains might also require a bit more 

insight to fine-tune, as well.  For example, in the AUVNavigation problem, we eventually 

added a coefficient of 100,000 (rather than a uniform coefficient of 1 in simpler Tag and 

RockSample) to the potential functions to properly guide the agent to the goal state from 

its initial uncertainty. Recall that the successful potential functions (EGD, TBGD, 

HBGD) reshaped rewards partially based on the multiplicative inverse of the agent’s 

distance from the goal, and thus changes to these functions (Eqs. 3.17-3.18) were quite 
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small when the agent was highly uncertain (since it was very far from the goal).  This 

meant that the additional signal from the potential function was easily outweighed by the 

costs of gathering information (namely moving with cost at most -1.73 for moving 

towards better location information, or -50 for surfacing to discover the agent’s exact 

location and resolve all uncertainty).  To “boost” the potential function’s signal toward 

cumulative, future rewards, we had to multiply the signal by a large constant in order to 

offset the order of magnitude differences between potential differences and reward costs.  

In other domains with high costs for information gathering, or to otherwise complete 

necessary intermediate steps towards the agent’s ultimate goal, large coefficients might 

also be necessary.  Determining an appropriate coefficient can either be done through 

experimental investigation, or by analytically comparing the additional shaped reward 

(from the difference in potential values, Eqs. 3.3-3.4) against the costs associated with 

actions that maximize or quickly increase shaped rewards.  We took a combination of 

both approaches to set our coefficient for AUVNavigation, although other coefficients 

might have also been appropriate and led to similar performance.   In the future, we 

intend to develop a greater theoretical understanding of how such coefficients can and 

should be determined based on the original shape of the reward function and the signals 

in the potential function.  Of note, the state-of-the-art Monte Carlo DESPOT algorithm 

also utilizes some parameter hand-tuning with respect to the problem domain, most 

notably the regularization parameter 𝜆 used by the ARDESPOT variant (Somani et al., 

2013).  To provide for a fair comparison, we also tuned this parameter for each of our 

experimental benchmarks, reusing the 𝜆 value suggested by Somani et al. in the 

documentation of the implementation of their algorithm
14

 for the Tag and RockSample 
                                                           

14
 Available online at 
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benchmarks, and after empirically searching for an appropriate value ourselves on 

AUVNavigation. 

3.6. Conclusions and Future Work 

In conclusion, we have explored how extending potential-based reward shaping 

(PBRS) from reinforcement learning (RL) to online planning with POMDPs can be used 

to improve approximate planning and agent performance given the compuational 

complexity of planning and limited time constraints.  In particular, our aim was to 

improve long term, cumulative reward estimations in full breadth planning to avoid 

problems with depth-focused planning identified in Section 3.1.  Our approach entails 

defining a potential function over the agent’s belief states that indicates the ability of the 

agent to earn future rewards.  The agent’s reward function is then shaped by adding value 

from this potential function, which leads the agent to be biased towards choosing actions 

during plan execution that cause the agent to reach belief states that earn larger rewards 

beyond the planning horizon.  We categorize four types of potential functions (with 

examples), along with hybrid combinations: (1) domain-dependent information from 

expected state potential (extending directly from the prior use of PBRS with RL and 

MDPs), (2) domain-independent information measuring a quality or property of a belief 

state (e.g., certainty), (3) belief prioritization (e.g., priority ordering on belief states), and 

(4) approximations of the optimal value function.  The second and third of these types are 

novel to POMDPs and offer forms of metareasoning (about agent knowledge and about 

histories of agent interactions with the environment, respectively) to improve POMDP 

planning. 

                                                                                                                                                                             
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.DownloadDespot  

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.DownloadDespot
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We established from a theoretical perspective that planning with PBRS (1) can, 

given a finite horizon, lead to different policies than planning with the original unshaped 

rewards, which in turn enables the agent to earn greater future rewards assuming a good 

potential function, (2) PBRS can most improve planning when planning horizons are 

shortest, and (3) even though the agent’s reward function is modified, planning with 

PBRS still optimizes (over the infinite horizon) the agent’s original reward function.  

Finally, we verified these results in practice using an empirical study employing three 

classic POMDP benchmark problems, demonstrating that under limited time constraints, 

an agent planning with PBRS better maximized its cumulative, unshaped rewards than 

planning without PBRS, especially when combining various forms of metareasoning and 

domain-specific information (Types 1-3).  In the most difficult benchmark, we also 

discovered that PBRS can enable time constrained online POMDP planning to 

successfully reach the target goal state when such behavior is otherwise incredibly 

difficult without reward shaping.  In particular, time limited planning requires 

intermediate positive signals indicating appropriate action sequences towards a goal state 

that are otherwise only discoverable with very deep planning identifying long sequences 

of actions reaching positive rewards.  For complex environments where the only positive 

reward is earned for reaching the goal state, PBRS can provide such intermediate signals 

missing from the original reward function to properly guide the agent, making this form 

of online planning a viable approach.  We also compared the performance of PBRS for 

online POMDP planning against three state-of-the-art online planning algorithms and 

discovered that PBRS using the best combination of potential functions (Types 1-3 on 
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two benchmarks, Type 4 on the other) performed comparable to or better than each of the 

state-of-the-art algorithms on all benchmarks tested.   

Furthermore, whilst the focus of this chapter has been on planning, the theoretical 

results on how to extend PBRS to POMDPs, the novel types of potential functions, and 

the effect of finite horizons on PBRS are also applicable to partially observable RL. 

In the future, we plan to continue this line of research in several directions. First, 

we intend to further study potential functions to determine what additional qualities or 

properties of belief states are useful indicators of future rewards in order to better 

determine how to choose appropriate potential functions given the properties of complex 

environments (and consider other forms of metareasoning that might be useful to add to 

other potential functions to further improve agent behavior). Second, we intend to explore 

the application of PBRS to other settings of planning, including (1) decentralized 

POMDPs, where planning complexity amongst multiple agents is even more complex 

than planning with a standard POMDP, and addressing multiagent planning complexity is 

still an open problem, and (2) offline POMDP planning, where concepts from PBRS such 

as the potential function could be used to better guide the selection of which belief states 

to plan around in order to create better plans focused on the most important belief states.  

Third, PBRS could be potentially included in other types of online POMDP planning 

algorithms (e.g., employed in Monte Carlo search methods to bias sampling towards 

large cumulative, future rewards), in which case both PBRS and related optimal reward 

functions (Sorg, Singh, & Lewis, 2011) would both be of interest to study in order to 

potentially further improve online POMDP planning. 
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CHAPTER 4   SITUATIONALLY-AWARE ONLINE HEURISTIC 

PLANNING FOR HIGHLY UNCERTAIN ENVIRONMENTS 
 

In this chapter, we present a second solution for the Analysis Problem (c.f., 

Section 1.3), also within the context of POMDPs, a popular approach to deliberative 

information gathering (c.f., Section 2.2.2).  In contrast to our first solution (PBRS for 

POMDPs, c.f., Chapter 3), this solution enables an agent to reflect upon the benefits of 

sensing actions (uncertainty reduction) during planning in order to lead the agent towards 

an appropriate policy for guiding action selection, instead of reflecting later during plan 

execution.  In this manner, the agent will find policies that cause the agent to first perform 

high quality deliberative information gathering to benefit its task accomplishment.   

Altogether, this approach enables the agent to reflect farther into the future than our first 

solution in order to potentially achieve more targeted, long term benefits from improved 

information gathering. 

This solution features reflection on the benefits of deliberative information 

gathering in two ways: (1) through the Long Sequence Entropy Minimization (LSEM) 

heuristic, which enables the agent to expand plans along paths of high quality sensing 

(through reduction of uncertainty in its knowledge), and (2) through the Difference-based 

Heuristic Selection (DHS) mechanism, which enables an agent to reflect on its most 

pressing needs in the context of its current plan: improving its knowledge or earning high 

rewards through task accomplishment.  Together, these advancements in POMDP 

planning improve both deliberative information gathering, as well as overall agent 

performance.  



www.manaraa.com

 
 

118 

Furthermore, as with our PBRS for POMDPs solution, this approach also solves a 

greater general problem in the POMDP literature: better online planning (i.e., greater 

cumulative reward achievement) with heuristic search algorithms, especially in highly 

uncertain domains that are in greatest need of reflective, deliberative information 

gathering. As such, this chapter is written to address the greater problem.  A shorter, 

earlier version was accepted for publication as a full paper at the AAMAS 2014 

conference (Eck & Soh, 2014b).  We evaluate our solution in several benchmark POMDP 

problems, demonstrating that our solution yields successful policies with less planning 

time in highly uncertain domains and comparable performance in simpler problems. 

4.1. Introduction 

Intelligent agents and multiagent systems deployed to real-world applications are 

frequently required to make decisions about how to accomplish goals and tasks while 

operating in uncertain environments.  One popular approach for reasoning under 

uncertainty is the partially observable Markov decision process (POMDP) (Kaelbling, 

Littman, & Cassandra, 1998), which offers several key features that enable an agent to 

decide how to behave even though it faces uncertainty.   First, POMDPs model the 

causes of uncertainty in the complex environment’s dynamics: both changes to the 

environment’s state over time, as well as partial observability hiding the correct state 

from the agent. Second, POMDPs also model the rewards earned and costs incurred by 

the agent for taking different actions, enabling the agent to plan sequences of actions 

earning high expected cumulative rewards that accomplish its tasks and goals.  

In particular, within POMDP planning, an agent faces two primary types of 

uncertainty: (1) uncertainty about the current state of the environment, and (2) 
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uncertainty in the cumulative rewards earned for different action sequences.  The first 

form of uncertainty—which we term environment state uncertainty (ESU)—reflects how 

well the agent understands the current state of its environment and is addressed through a 

Bayesian framework for updating probabilistic beliefs about the current state of the 

environment. The second form of uncertainty, on the other hand—which we term 

cumulative reward uncertainty (CRU)—reflects the agent’s understanding of the 

cumulative rewards it will earn and is addressed through recursively or iteratively 

computing the series of rewards earned for different action sequences, so long as the 

agent has time for planning.  As the agent plans for an increasing number and depth of 

action sequences, its estimations of cumulative rewards become more accurate.  

In this chapter, we consider the setting of online planning where agents must 

interleave planning and execution while operating in the environment, and thus have 

limited amounts of time for planning.  Such an approach to planning is popular in the 

recent literature, as online planning enables an agent to be more reactive in real-world 

environments and adapt to unexpected situations.  It is also more efficient in very large 

problems (with many possible states, actions, and observations) where having to plan in 

advance for all possible situations in offline planning can be prohibitively expensive, 

even though offline planning can afford more time for planning.  Instead, online planning 

enables an agent to repeatedly plan only locally around its current belief and choose the 

best possible action in its current situation without worrying about other situations it 

might never encounter. 

Within online POMDP planning, the state-of-the-art algorithms focus primarily 

on resolving the second type of uncertainty (CRU), as it is assumed that the first type 
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(ESU) will naturally be resolved by the Bayesian belief framework as the agent receives 

observations after taking each action.  For instance, heuristic search algorithms such as 

AEMS2 (Anytime Error Minimization Search 2) (Ross & Chaib-draa, 2007) and FHHOP 

(Factored Hybrid Heuristic Online Planning) (Zhang and Chen, 2012) guide planning to 

minimize the uncertainty in the agent’s estimations of cumulative future rewards for 

taking each action.  In these algorithms, such uncertainty can be quantified through an 

error bound on future rewards, measured as the difference between upper and lower 

bound estimates on cumulative rewards.  By minimizing this error bound, the agent tries 

to quickly find plans that are close to optimal by selectively targeting calculations that 

best improve the agent’s estimations of cumulative rewards.  The state-of-the-art in 

Monte Carlo search methods, ARDESPOT (Anytime Regularized DEterminized Sparse 

Partially Optimal Trees) (Somani et al., 2013), similarly guides random sampling of 

action sequences for cumulative reward calculations during online planning.  In several 

experimental studies across a wide range of different benchmarks, these approaches have 

been demonstrated to be quite effective (e.g., Ross & Chaib-draa, 2007; Ross et al., 2008; 

Silver & Veness, 2010; Somani et al., 2013; Zhang & Chen, 2012), indeed achieving 

performance close to (or even exceeding) the state-of-the-art offline planning algorithms 

for which planning time is less constrained. 

However, we will demonstrate that even state-of-the-art online POMDP planning 

algorithms have difficulty reducing CRU when it is also very difficult to reduce ESU, 

especially the heuristic search algorithms.  We term such environments highly uncertain 

environments.  This difficulty arises for several reasons.  First, when ESU is high, the 

agent often requires long sequences of information gathering actions to adequately 
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understand the current state of the environment.  Along these long sequences, the agent’s 

beliefs about the current state of the environment will not change much after any 

individual action (else long sequences of information gathering would not be necessary).  

Given the manner in which error bounds on cumulative rewards are calculated, this also 

implies that the error bound will not change much from one action to the next, making it 

difficult to plan action sequences with low CRU until ESU is reduced.  Second, the upper 

and lower bounds on cumulative rewards are commonly calculated using approaches 

(e.g., QMDP, Fast Informed Bound (FIB), Blind (Hauskrecht, 2000)) that assume full (or 

near full) observability of the environment state, and thus assume no (or little) ESU.  As a 

result, actions taken to reduce ESU are suboptimal under the upper and lower bounds, 

and are not favored by the state-of-the-art algorithms.  Overall, these challenges make it 

difficult for state-of-the-art heuristic search online POMDP planning algorithms to find 

acceptable plans within the short times allotted for planning in highly uncertain 

environments,  

In this chapter, we propose a novel heuristic search online POMDP planning 

algorithm intended to address the challenge of planning in highly uncertain environments 

where ESU is difficult to reduce.  The intuition of our solution is to enable the agent to 

reflect on its most pressing needs: reducing either ESU or CRU, then plan actions that 

address the greater need.  In particular, we propose a novel heuristic called Long 

Sequence Entropy Minimization (LSEM) that considers the quality of the agent’s 

beliefs about the current environment state in order to plan the long sequences of 

information gathering actions necessary to reduce ESU.  Then, since the agent knows 

how to handle ESU, we employ situational-awareness within the agent’s planning to 
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reflect on the agent’s current uncertainty (both ESU and CRU) to determine which type it 

most needs to reduce in order to create a successful plan that leads the agent to both 

understand its environment and earn large, cumulative future rewards.  With this 

situational-awareness, which we call Difference-based Heuristic Selection (DHS), the 

agent switches between planning with different heuristics (both our novel LSEM and 

state-of-the-art heuristics such as AEMS2 (Ross & Chaib-draa, 2007)) to guide its 

planning in order to reduce either ESU or CRU as necessary. 

To evaluate our novel algorithm, we compare its performance against state-of-the-

art heuristic search and Monte Carlo search online POMDP planning algorithms within 

several classic POMDP benchmarks.  We consider both (1) highly uncertain 

environments that require long sequences of information gathering actions in order to 

demonstrate the challenges created when it is difficult to reduce ESU and the 

effectiveness of our approach in dealing with such challenges, and (2) more certain 

environments where it is easier to reduce ESU, enabling us to evaluate whether our 

approach is still safe to use when traditional planning algorithms are already effective.  

We discover that our solution: (1) successfully produces better plans in complex, highly 

uncertain environments when the agent was most time constrained (finding plans capable 

of achieving positive rewards over 200 times faster than AEMS2 and FHHOP); (2) 

earned some of the highest rewards even in an environment that was not highly uncertain; 

and (3) variants of DHS with a key property (𝜖-optimality) also achieved good 

performance in the highly uncertain but least complex environment where multistage 

planning was not necessary.  Together these results demonstrate both (i) that our solution 
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appropriately selects heuristics to guide planning based on the agent’s current need, and 

(ii) that our solution is safe to use in environments that are not highly uncertain. 

The rest of this chapter is organizes as follows.  In Section 4.2, we provide the 

necessary background on online POMDP planning and state-of-the-art heuristic search 

algorithms that are closest in design to our solution.  Next, in Section 4.3, we further 

describe the problem addressed in this chapter: the challenge of planning in highly 

uncertain environments due to the influence of ESU on the quality of planning.  Then, in 

Section 4.4, we introduce our proposed approach consisting of the LSEM heuristic and 

the DHS algorithm designed to balance reducing ESU and CRU to improve online 

POMDP planning in highly uncertain environments.  In Section 4.5, we describe the 

experimental setup used to empirically evaluate the performance of our approach in a 

range of benchmark POMDP problems, followed by a discussion of the results of those 

experiments in Section 4.6.  We conclude by summarizing our research and proposing 

interesting future work we intend to explore in Section 4.7. 

Of note, this chapter is a significant extension of an earlier conference paper (Eck 

and Soh, 2014b), providing more in-depth background, problem, and methodology 

discussions, as well as a larger experimental setup and more theoretical and empirical 

results.  

4.2. Background 

4.2.1. Online POMDP Planning 

In many real-world domains and applications of intelligent agents and multiagent 

systems, pre-planning using offline planning algorithms is infeasible for the agent.  For 

instance, the problem might be sufficiently large in the size of the state, action, and 
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observation spaces that planning for all possible future belief states is prohibitively 

expensive (in both time and especially memory), even with copious amounts of time 

available for planning during offline planning.  Instead, planning locally around only the 

belief state the agent currently holds is more efficient and effective through online 

POMDP planning since the latter involves frequently recalculating a plan, and thus the 

agent need not worry about belief states not reachable in the near future from its current 

belief. 

Most online POMDP algorithms follow the same general search procedure to 

compute a policy 𝜋.  In these algorithms, the agent constructs an AND-OR policy tree 

with two types of nodes
15

: OR nodes representing belief states and AND nodes 

representing actions.  To illustrate, we provide an example tree in Figure 4.1.  The tree is 

rooted with an OR node for the agent’s current belief state 𝑏𝑐.  From this belief state, the 

agent can choose to take one of several actions 𝑎 ∈ 𝐴 (e.g., 𝐴 = {𝑎1, 𝑎2} in our 

illustrative example).  Thus, the node 𝑏𝑐 has branches to corresponding AND nodes for 

each action 𝑎 ∈ 𝐴.  Since each action can produces multiple observations, each AND 

node has a branch for each possible observation 𝑧 ∈ 𝑍 (e.g., 𝑍 = {𝑧1, 𝑧2} in our 

illustrative example) leading to a new belief state OR node 𝑏𝑐+1
𝑎,𝑧

.  The tree then expands 

similarly along these non-root OR nodes. 

Online planning itself involves three stages, summarized in Algorithm 4.1.  First, 

the agent chooses a leaf node in the tree 𝑏𝑐+𝑛
∗ ∈ ℒ (where ℒ represents the set of leaf 

nodes in the tree) from which to expand the tree.  Second, the agent adds AND nodes for  

                                                           
15

 Given the close relationship between belief states and OR nodes, as well as actions and AND nodes, we 

reuse the same notation: 𝑏 represents both a belief state and its corresponding OR node in the policy tree, 

and 𝑎 represents both an action and its corresponding AND node in the policy tree. 
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Figure 4.1: (a) Example 𝝅 Tree with Two Actions and Two Observations  

with Depth 1, (b) Example Path with Depth 𝒏 

 

PolicySearch(𝒃𝒄, 𝝉) 

while TimeSpent()< 𝜏 and not DoneSearching() 

   1.  𝑏∗
𝑐+𝑛 = ChooseLeafNode(ℒ) 

   2.  Expand(𝑏∗
𝑐+𝑛) 

   3.  UpdateAncestors(𝑏∗
𝑐+𝑛) 

end while 

return argmax𝑎∈𝐴 𝑄(𝑏𝑐, 𝑎) 

Algorithm 4.1: Generic Policy Search Procedure 

each action as children to the chosen leaf node, followed by OR nodes for each 

observation and resulting belief state from each new AND node.  Finally, the agent 

calculates the expected rewards at the chosen OR node (that used to be a leaf before the 

tree expanded) and propagates this information backwards along the path from the chosen 

leaf node to the root of the tree using Eqs. 2.7-2.8 to update the agent’s cumulative 

reward estimates.  This additional reward information helps reduce the agent’s 



www.manaraa.com

 
 

126 

uncertainty about the cumulative reward expected from different actions in its current 

belief state.   

Since each iteration of the loop in Algorithm 4.1 iteratively improves the agent’s 

cumulative reward estimates, the algorithm can execute in an anytime fashion.  Online 

planning generally occurs until either (1) the agent has exhausted the amount of time 𝜏 

allotted for planning, or (2) some other stopping condition is met, such as the agent is 

certain in its estimates of cumulative rewards and further expansion will not further 

reduce its CRU.  

To account for the fact that rewards beyond a leaf node are initially fully 

uncertain, online POMDP planning algorithms can improve cumulative reward 

estimations by adding additional a priori value estimates for leaf nodes.  Commonly, the 

agent maintains upper (𝑄 and 𝑉) and lower (𝑄 and 𝑉) bounds on the discounted, 

cumulative rewards from each node using very simple pre-computed policies
16

 estimating 

the cumulative rewards from a belief state.  In Step 3 of the algorithm, this information is 

also propagated back through the tree using analogues of Eqs. 2.7-2.8.  

After planning, the agent forms its policy 𝜋 as a subtree of the policy tree, 

selecting only the actions maximizing the 𝑄(𝑏, 𝑎) from each belief state 𝑏, using an 

analogue of Eq. 2.9.  The agent then executes the action within its policy for the current 

belief state.  Afterwards, the agent can either continue to execute the formed policy for a 

number of future actions, or it can recalculate a new policy for its new belief state.  Either 

is acceptable, although re-planning is commonly done each time the agent must choose 

                                                           
16

 Using algorithms such as Fast Informed Bound (Hauskrecht, 2000) and Blind policy (Hauskrecht, 2000) 

for the upper and lower bounds, respectively. 
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an action. For further details about online planning, please consult a recent survey paper 

by Ross et al. (2008). 

4.2.2. Heuristic Search Algorithms for Online POMDP Planning 

The key difference between different types of online POMDP planning algorithms 

is how the algorithm selects the leaf belief state 𝑏𝑐+𝑛
∗ ∈ ℒ to expand in Step 1.  This is 

because Steps 2 and 3 are relatively straightforward — expansion in Step 2 generally 

involves the same process (adding child action AND nodes and subsequent belief state 

OR nodes), and updating cumulative reward estimates in Step 3 always involves 

computing Eqs. 2.7-2.8 (and the analogues for upper and lower bounds) along the path 

from the leaf node to the current belief state root 𝑏𝑐. 

One very popular type of online POMDP planning algorithm is heuristic search 

algorithms.  These algorithms use a heuristic function ℎ: 𝛱(𝑆) → ℝ that evaluate the 

usefulness of expanding a leaf belief state  𝑏𝑐+𝑛
∗ ∈ ℒ with respect to improving the overall 

quality of the agent’s estimates of cumulative rewards and thus its policy.  Choosing the 

leaf belief state to expand in Step 1 is as simple as finding the leaf that maximizes this 

heuristic function: 

                       𝑏𝑐+𝑛
∗ = 𝑐ℎ𝑜𝑜𝑠𝑒(ℎ) = argmax𝑏𝑐+𝑛∈ℒ ℎ(𝑏𝑐+𝑛)   (4.1) 

The state-of-the-art heuristic search algorithms use heuristics designed to 

minimize the agent’s overall uncertainty in the cumulative rewards (CRU) earned by the 

policy formed during planning.  That is, they choose to expand the policy tree along leaf 

belief states that contribute the most uncertainty to the agent’s cumulative reward 

estimations, since expanding the tree at these belief states provides more information 

about the cumulative rewards earned along the path from the leaf belief state back to the 
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current belief state at the root of the tree.  This additional information can then help 

reduce the agent’s CRU along that path, and ultimately in the entire tree. 

Within these heuristics, the CRU from a belief state is measured using an error 

bound on the value function at that belief state: 

                                         𝑒(𝑏) =  𝑉(𝑏) − 𝑉(𝑏)     (4.2) 

where 𝑉(𝑏) and 𝑉(𝑏) are the upper and lower bounds on the value function (i.e., upper 

and lower bounds on cumulative rewards) from the belief state.  Given the definition of 

upper and lower bound, we know that 

                                        𝑉(𝑏) ≤ 𝑉∗(𝑏) ≤ 𝑉(𝑏)      (4.3) 

where 𝑉∗(𝑏) is the optimal reward from a belief state.  Thus, minimizing the error bound 

𝑒(𝑏) causes the distance between the upper and lower bound to shrink and eventually 

both the upper and lower bound estimates will converge to the optimal cumulative reward 

under the optimal value function (by the Squeeze Theorem). 

Since upper bounds can only decrease and lower bounds can only increase, 

choosing to expand a leaf belief state will provide information that can only decrease the 

error bound at the root belief state (after propagating new cumulative reward information 

back in Step 3 of the algorithm) and thus improves (or does not worsen) the agent’s CRU.  

Moreover, choosing to expand the leaf belief state 𝑏𝑐+𝑛 with the greatest error bound 

𝑒(𝑏𝑐+𝑛) has the greatest potential to improve the cumulative reward estimate at the root 

since this node is causing the greatest CRU in the tree.  Thus, choosing to expand the tree 

along maximal error bound leaf belief states can help minimize the agent’s overall CRU. 

To further improve the quality of planning, the state-of-the-art heuristic search 

algorithms also incorporate other information into their heuristics to further refine how 
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the tree expands during planning so that expansions provide the most informative 

information to improve the cumulative reward estimations.  The first such heuristic, 

Anytime Error Minimization Search 2 (AEMS2) (Ross & Chaib-draa, 2007), also 

considers the likelihood that the leaf belief state 𝑏𝑐+𝑛 is ever reached from the current 

belief state 𝑏𝑐 (so that it can focus planning on the belief states the agent will most likely 

experience), as well as optimistically tries to follow paths where the upper bound on the 

cumulative rewards is maximized since these paths have the greatest potential to earn the 

agent large cumulative rewards, which is the goal of planning in the first place.  

Altogether, the AEMS2 heuristic is given by: 

           ℎ𝐴𝐸𝑀𝑆2(𝑏𝑐+𝑛) = 𝑒(𝑏𝑐+𝑛) ∏ 𝑤(𝑏𝑐+𝑖, 𝑎𝑖)𝑤(𝑏𝑐+𝑖, 𝑎𝑖, 𝑧𝑖+1)𝑛−1
𝑖=0    (4.4) 

where 

                        𝑤(𝑏, 𝑎) = {  1 if 𝑎 ∈ argmax𝑎′∈𝐴 𝑄(𝑏, 𝑎′)

 0                                           else
     (4.5) 

favors paths maximizing the upper bound on cumulative rewards 𝑄 and 

                                      𝑤(𝑏, 𝑎, 𝑧) = 𝛾𝑃(𝑧 | 𝑎, 𝑏)     (4.6) 

considers the probability of making observations that lead to next belief states along the 

path from the root of the tree to the leaf. 

In practice, the AEMS2 algorithm has performed very competitively with state-

of-the-art offline algorithms that do not suffer from the same time constraints on planning 

(e.g., Ross & Chaib-draa, 2007; Ross et al., 2008; Silver & Veness, 2010; Somani et al., 

2013; Zhang & Chen, 2012).  Moreover, it is also guaranteed to find an 𝜖-optimal policy 

(i.e., a policy whose cumulative rewards fall within 𝜖 of the optimal cumulative rewards) 

in finite (albeit possibly large) time. 
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More recently, Zhang & Chen (2012) have proposed a complementary heuristic to 

work alongside ℎ𝐴𝐸𝑀𝑆2 in order to further speed up planning by reducing the agent’s 

CRU even faster.  Their heuristic is included in the Fast Hybrid Heuristic Online 

Planning (FHHOP) algorithm and instead of optimistically following the upper bound on 

cumulative rewards 𝑄, it instead favors paths (1) with high lower bounds on cumulative 

rewards 𝑄 that are used in the actual policy creation stage (c.f., last line of Algorithm 

4.1), and (2) considers not just maximal paths according to 𝑄, but also near-optimal paths 

to increase the number of leaves with non-zero value that might be selected by the 

heuristic during each iteration of the planning search algorithm.  This heuristic in FHHOP 

is given by: 

                       ℎ𝐹𝐻𝐻𝑂𝑃(𝑏𝑐+𝑛) = 𝑒(𝑏𝑐+𝑛)𝑤1,2(𝑏𝑐+𝑛) ∏ 𝑤(𝑏𝑐+𝑖, 𝑎𝑖, 𝑧𝑖+1
𝑛−1
𝑖=0 )   (4.7) 

where 

                    𝑤1,2(𝑏𝑐+𝑛) = max𝑖∈[0,𝑛−1] 𝑤2(𝑏𝑐+𝑖, 𝑎𝑖) ∏ 𝑤1(𝑏𝑐+𝑗, 𝑎𝑗)𝑛−1
𝑗=0,𝑗≠𝑖    (4.8) 

selects near-optimal paths according to 𝑄, permitting suboptimality in one action through 

𝑤2: 

                                    𝑤1(𝑏, 𝑎) = {
  1 if 𝑎 ∈ argmax𝑎′∈𝐴 𝑄(𝑏, 𝑎′)

 0                                           else
     (4.9) 

                                    𝑤2(𝑏, 𝑎) = {
  1 if 𝑎 ∈ argmax𝑎′∈𝐴𝑆

𝑄(𝑏, 𝑎′)

 0                                           else
     (4.10) 

where 

𝐴𝑆 = {𝑎 ∈ 𝐴\ argmax
𝑎′∈𝐴

𝑄(𝑏, 𝑎′) | 𝑄(𝑏, 𝑎) > max
𝑎′′∈𝐴

𝑄(𝑏, 𝑎′′)} 
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represents the second best actions (according to lower bound estimate 𝑄) that aren’t 

guaranteed to be suboptimal (i.e., have a lower upper bound than the guaranteed lower 

bound of another action) and thus wouldn’t be pruned by branch and bound pruning. 

Comparing ℎ𝐴𝐸𝑀𝑆2 and ℎ𝐹𝐻𝐻𝑂𝑃, we note that both aim to reduce the agent’s CRU 

by focusing on the error bound on cumulative rewards 𝑒(𝑏).  However, they differ in 

which paths leading to leaf belief nodes that they favor for reducing such uncertainty. 

ℎ𝐴𝐸𝑀𝑆2 optimistically favors paths (and corresponding leaf belief states) that lead to the 

most possible reward, whereas ℎ𝐹𝐻𝐻𝑂𝑃 conservatively favors paths (and corresponding 

leaf belief states) leading the most guaranteed reward.  Unfortunately, due to its 

conservative nature, ℎ𝐹𝐻𝐻𝑂𝑃 cannot guarantee that it finds an approximately optimal 

policy in finite time. 

To combine the best of both heuristics, the FHHOP algorithm (Zhang & Chen, 

2012) actually considers both heuristics at the same time.  That is, it calculates both 

heuristics for all leaf belief states when deciding which leaf belief state 𝑏𝑐+𝑛
∗ ∈ ℒ to 

expand.  After calculating both, it performs a weighted comparison to bias selection to 

favor the heuristic that has best reduced the error bound 𝑒(𝑏) in past iterations.  In this 

way, the algorithm gains the theoretical benefits of the ℎ𝐴𝐸𝑀𝑆2 heuristic (i.e., finding an 

𝜖-optimal policy in finite time) by following the ℎ𝐴𝐸𝑀𝑆2 heuristic often enough, yet it can 

possibly find high quality plans faster than AEMS2 by using the ℎ𝐹𝐻𝐻𝑂𝑃 heuristic when 

it better guides planning.  Moreover, this algorithm learns over time which heuristic to 

use in order to best reduce uncertainty in cumulative reward estimations and result in the 

best plans for maximizing agent rewards while operating in the environment. 
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Of note, the Factored portion of the FHHOP name refers to the fact that the 

algorithm also exploits the state-of-the-art in POMDP representations: the Mixed 

Observability Markov Decision Process (MOMDP) (Ong et al., 2010).  In a MOMDP, 

the state space 𝑆 = 𝒳 × 𝒴 is factored into a set of fully observable states 𝒳 (that are 

always directly observed by the agent) and a set of partially observable states 𝒴 (that are 

understood through observations 𝑍, as in the traditional POMDP representation, c.f. 

Section 2.2.2).  Since fully observable states are not hidden, this representation speeds up 

several important calculations frequently performed by agents while planning, especially 

Eq. 2.4 since only some state variables are hidden and need to be estimated using the 

Bayesian belief state.  Of course, there is nothing special about this representation that 

means that other online POMDP planning algorithms such as AEMS2 or our proposed 

solution cannot be used with MOMDPs, so in our experimental setup (c.f., Section 4.5), 

we use this representation with all algorithms. 

4.3. Problem 

Although the ℎ𝐴𝐸𝑀𝑆2 and ℎ𝐹𝐻𝐻𝑂𝑃 heuristics are well designed to reduce agent 

uncertainty about cumulative rewards while the agent is planning a policy to control its 

actions, they assume that the agent’s uncertainty about the current state of the 

environment will simply be resolved by whatever observations are received after taking 

actions.  That is, the heuristics do not consider any information describing the uncertainty 

in the agent’s beliefs about the current environment state when deciding how to expand 

the agent’s plan, and instead rely on the Bayesian framework for belief updates (Eq. 2.4) 

to handle ESU. 
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In many kinds of environments, this is not a concern, and both the AEMS2 and 

FHHOP algorithms have performed quite well on a range of POMDP benchmark 

problems (e.g., Ross & Chaib-draa, 2007; Ross et al., 2008; Silver & Veness, 2010; 

Somani et al., 2013; Zhang & Chen, 2012) due to several reasons.  First, in these 

environments, the environment state might be relatively easy to identify, e.g. due to 

highly accurate direct observations about the state of the environment, and thus special 

care is not needed to deal with ESU.  Second, the agent might receive relatively large 

rewards or costs based on periodically acting on its knowledge of the environment state. 

Thus, planning actions to receive these easily identifiable high rewards naturally requires 

planning actions that first perform a small number of information gathering actions to 

understand the correct environment state.  Finally, if the problem is sufficiently small 

(especially in the number of states, but also the number of actions and observations), then 

planning might be relatively easy in general. 

Unfortunately, there are also many real-world environments and applications of 

intelligent agents and multiagent systems where ESU is much more difficult to reduce, 

which we term highly uncertain environments.  This difficulty could be due to a number 

of factors.  First, there might be many states of the environment that can generate the 

same observation.  In which case, such an observation does not help us discriminate 

between which is the next state since many possible next states could have generated that 

observation.  Thus belief updates in Eq. 2.4 are rather uninformative whenever the agent 

receives such an observation.  For instance, if most states 𝑠′ are equally likely to produce 

a recent observation 𝑧 after the recent action 𝑎, then the 𝑂(𝑠′, 𝑎, 𝑧) term will be equal in 
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Eq. 2.4 for each such next state 𝑠′, resulting in minimal changes
17

 to the belief state 𝑏𝑎,𝑧.  

Second, each action and next state could generate a large number of possible 

observations, meaning that each new observation provides little information about the 

next state of the environment after the action is taken.   In both scenarios, each belief 

update is at risk of providing minimal changes to the agent’s belief state (Eq. 2.4).   

As a result of these difficulties, highly uncertain environments generally require 

long sequences of information gathering actions in order to properly reduce ESU.  This 

has two important implications for planning with state-of-the-art heuristic search 

algorithms that specialize in reducing CRU:  (1) ESU will lead to similar error bound 

𝑒(𝑏𝑐+𝑛) values across leaf nodes, causing the state-of-the-art heuristics to fail to 

discriminate between “good” and “bad” leaf nodes to expand during planning, and (2) 

paths containing the necessary long sequences of information gathering actions often fail 

to have maximal upper or lower bound values, causing ℎ𝐴𝐸𝑀𝑆2 and ℎ𝐹𝐻𝐻𝑂𝑃 to initially 

ignore these necessary action sequences during policy tree expansion. 

First, recall that the error bound 𝑒(𝑏) of a leaf belief state 𝑏 is computed as the 

difference between the upper and lower bounds on cumulative rewards (Eq. 4.2): 

𝑉(𝑏) − 𝑉(𝑏).  For leaf belief states 𝑏𝑐+𝑛, both the upper and lower bounds are 

represented by piecewise linear convex vectors called alpha vectors with one alpha 

vector 𝛼𝑎 per action 𝑎 (Hauskrecht, 2000).  The upper or lower bound is then calculated 

as the dot product of the belief state 𝑏𝑐+𝑛 with the alpha vector 𝛼𝑎 giving the greatest 

value across the entire set of alpha vectors: 

                                          𝑉(𝑏𝑐+𝑛) = max𝛼𝑎∈𝛢𝑈
𝛼𝑎 ⋅ 𝑏𝑐+𝑛      (4.11) 

                                                           
17

 These small changes only reflect possible state transitions from the 𝑇(𝑠, 𝑎, 𝑠′) component from the prior 

belief 𝑏 and do not consider information contained in observations. 
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                                       𝑉(𝑏𝑐+𝑛) = max𝛼𝑎∈𝛢𝐿
𝛼𝑎 ⋅ 𝑏𝑐+𝑛      (4.12) 

where 𝛢𝑈 is the set of alpha vectors for the upper bound, and 𝛢𝐿 is the set of alpha 

vectors for the lower bound. 

Since the upper and lower bounds of a leaf belief state 𝑏𝑐+𝑛 are computed as dot 

products with 𝑏𝑐+𝑛, the upper and lower bound values will be very similar for belief 

states that are also similar.  As described above, in highly uncertain environments, the 

agent’s beliefs will not change much until it has performed a long sequence of 

information gathering actions.  Hence, after taking any given action and receiving any 

given observation, the agent’s next belief will be very similar to its previous belief.  Thus, 

while expanding the policy tree, a child OR node will have a belief very similar to its 

parent OR node, and sibling OR nodes will also have similar beliefs.  Therefore, the 

upper and lower bounds 𝑉 and 𝑉, and consequently the error bound 𝑒, will be similar 

across the leaves of the policy tree until the agent has gathered sufficient information to 

reduce its ESU.  As a result, the error bound will not appropriately distinguish which 

belief states to expand while planning, so existing heuristics relying on the error bound 

will be less useful in guiding planning to reduce CRU (due to high amounts of ESU). 

Second, in the algorithms used to compute the alpha vectors, such as Fast 

Informed Bound (FIB) or QMDP for the upper bound, and Blind for the lower bound 

(Hauskrecht, 2000), the algorithms assume full (or near) full observability of the 

environment state by transforming the original POMDP to a simpler (fully observable) 

MDP model.  In which case, information gathering actions have little value to the agent 

since it has no ESU.  Thus, information gathering actions (which also often incur some 

cost in return for information) generally have smaller upper and lower bounds than other 
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actions.  Hence, information gathering actions will rarely maximize the upper 𝑄 and 

lower 𝑄 bounds on cumulative rewards from an action AND node in the policy tree.  

Therefore, the ℎ𝐴𝐸𝑀𝑆2 and ℎ𝐹𝐻𝐻𝑂𝑃 heuristics are also biased (in the 𝑤(𝑏, 𝑎) and 

𝑤1,2(𝑏, 𝑎) components, Eqs. 4.5, 4.8-4.10) to not select leaf belief states along paths 

containing the necessary long sequences of information gathering actions required to 

reduce ESU.  Thus, the agent will not discover the large cumulative rewards ultimately 

possible after reducing its ESU, and instead long sequences of information gathering 

actions will not be performed by the agent while executing its plan. 

Overall, both of these problems greatly reduce the effectiveness of state-of-the-art 

heuristic search algorithms to create high quality plans for agents operating in highly 

uncertain environments, due to their inability to reduce ESU.  We note that the 𝜖-optimal 

guarantees of AEMS2 and FHHOP (c.f., Section 4.2.2) do imply that eventually the 

algorithms will produce near optimal policies, even in highly uncertain environments, but 

such policies could take much longer amounts of time than available during online 

planning.  In the following section, we propose an algorithm that can find good plans 

faster using online POMDP planning in highly uncertain environments. 

4.4. Solution Approach 

In this section, we propose our solution to improve online POMDP planning in 

highly uncertain environments where the agent requires long sequences of information 

gathering actions in order to reduce uncertainty about the environment state.  First, we 

describe the intuition for our solution: splitting planning into stages, where each stage 

reduces a different type of uncertainty to produce high quality plans for the agent in 

limited amounts of time allocated for planning.  Second, we introduce a novel heuristic 
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for guiding planning to reduce ESU by biasing policy search towards policies favoring 

the necessary long sequences of information gathering.  Then, we introduce a 

situationally-aware algorithm capable of identifying which planning stage the agent is 

currently in so that it knows how to guide its planning using different heuristics.  Finally, 

we analyze the performance of our algorithm from a theoretical perspective in order to 

discover important properties. 

4.4.1. Planning Stages 

To develop a solution for improving online POMDP planning in highly uncertain 

domains, we start with a simple observation. The problem with existing heuristics—that 

work very well in environments with less ESU—is that they fail to plan to perform the 

necessary long sequences of information gathering actions needed to understand the 

environment.  If, instead, the agent had a method for planning the needed long sequences 

of information gathering actions to reduce ESU, then after those actions were executed, 

the agent would be in a position no different from planning in environments that are not 

highly uncertain.  At this point, existing state-of-the-art heuristics should continue to 

work well by planning actions that maximize the agent’s rewards by reducing CRU 

during planning. 

Based on this observation, we propose splitting planning in highly uncertain 

environments into two stages, depicted in Figure 4.2.  In the first stage, the agent should 

focus on reducing ESU by planning for, then performing, the necessary long sequences of 

information gathering actions needed to understand the current state of the agent’s 

environment.   This enables the agent to move from an initial starting point of high 

uncertainty about the environment to a position where the agent has a more certain  
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Figure 4.2: Stages of Planning in Highly Uncertain Environments 

understanding of the environment.  Afterwards, the agent can exploit this understanding 

of the environment in order to quickly reduce its CRU in order to earn the agent large 

rewards while operating in the environment.  Splitting planning into two such stages has 

several advantages. 

First, it enables the agent to focus most of its planning efforts towards reducing 

one type of uncertainty at a time, based on its most pressing need: first ESU, then CRU.   

Second, by focusing on reducing ESU first, the agent will be in a position in Stage 

2 where existing heuristics are quite appropriate to guide planning, allowing the agent to 

reuse previously reported techniques that have been demonstrated to work well in similar 

conditions (e.g., Ross & Chaib-draa, 2007; Ross et al., 2008; Silver & Veness, 2010; 

Somani et al., 2013; Zhang & Chen, 2012).   

Third, by focusing on reducing ESU first, the agent can achieve beliefs close to 

pure certainty where the agent is close (temporarily at least) to full observability, which is 

the condition under which the upper bound on agent rewards 𝑉 are calculated using 

algorithms such as FIB or QMDP (Hauskrecht, 2000).  This implies that following the 

sequence of actions that maximize the upper bounds 𝑉 and 𝑄—as favored by the 𝑤(𝑏, 𝑎) 

component of ℎ𝐴𝐸𝑀𝑆2—will quickly lead the agent to the sequence of actions that will 

also maximize its cumulative rewards.  Thus, reducing ESU first can potentially improve 

the effectiveness of state-of-the-art heuristics like ℎ𝐴𝐸𝑀𝑆2 in reducing CRU. 
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In order to produce an algorithm that successfully controls online POMDP 

planning through both stages in highly uncertain domains, our solution contains two 

primary novel contributions.  First, we propose a novel heuristic that guides planning to 

expand the policy tree during the first stage in order to plan the long sequences of 

information gathering actions necessary for ESU reduction.  The second stage, on the 

other hand, does not need a new heuristic as we can simply reuse the state-of-the-art 

heuristics such as ℎ𝐴𝐸𝑀𝑆2 (or ℎ𝐹𝐻𝐻𝑂𝑃) for CRU reduction.  Instead, we also contribute a 

novel mechanism providing situational-awareness to identify which stage the agent is 

currently in, then selects the appropriate heuristic to guide planning. 

4.4.2. LSEM Heuristic 

In order to guide planning to form policies with long sequences of information 

gathering actions necessary to reduce ESU, we propose a novel heuristic called Long 

Sequence Entropy Minimization (LSEM).  This heuristic directly measures the ESU in 

an agent’s belief states so that the agent can identify how confused it would be about the 

environment in each belief state, and then expand the policy tree in such a manner that 

the agent’s beliefs are most certain and ESU is minimized. 

In particular, because a belief state 𝑏 is represented by a probability distribution, 

we can directly measure the uncertainty in the agent’s belief using the entropy function 

(Araya-Lopez et al., 2010): 

                                                 𝐻(𝑏) = − ∑ 𝑏(𝑠) log 𝑏(𝑠)𝑠∈𝑆        (4.13) 

which gives us a measure of ESU (in the range [0, log|𝑆|]), similar to the measure for 

CRU 𝑒(𝑏).   
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However, unlike 𝑒(𝑏), expanding the policy tree along leaf belief states 𝑏𝑐+𝑛 ∈ ℒ 

with greatest 𝐻(𝑏) will not necessarily reduce the overall ESU in the policy.  This 

critical insight stems from the fact that 𝐻(𝑏) can actually increase from a belief state to 

its children (e.g., if the agent receives an observation in evidence of a next state that is 

contrary to its current beliefs), whereas 𝑒(𝑏) values can only decrease as the policy tree 

is expanded (based on the definition of upper and lower bounds in Eq. 4.2).  So, in order 

to minimize ESU, we want to select belief states with lower 𝐻(𝑏) values.   

Since heuristic search algorithms choose leaf belief states with the highest 

heuristic values (Eq. 4.1), we consider instead the agent’s certainty in a belief (which is 

the additive inverse of uncertainty): 

                                                      𝐶(𝑏) = log|𝑆| − 𝐻(𝑏)     (4.14) 

which is maximized whenever 𝐻(𝑏) is minimized.  Considering 𝐶(𝑏) in a heuristic thus 

guides the agent to minimize ESU. 

Moreover, just as the ℎ𝐴𝐸𝑀𝑆2 and ℎ𝐹𝐻𝐻𝑂𝑃 heuristics consider more than just the 

actual measure of CRU 𝑒(𝑏) in their calculations to more efficiently guide expansion of 

the policy tree, we also add additional measures to our LSEM heuristic to quickly reduce 

ESU.   We explain the designed purpose of each additional component below.  Our entire 

heuristic is given by: 

                  ℎ𝐿𝑆𝐸𝑀(𝑏𝑐+𝑛) = 𝐶(𝑏𝑐+𝑛)𝑑(𝑏𝑐+𝑛)𝑉(𝑏𝑐+𝑛) ∏ 𝑤(𝑏𝑐+𝑖, 𝑎𝑖, 𝑧𝑖+1)𝑛−1
𝑖=0   (4.15) 

First, the 𝑑(𝑏𝑐+𝑛) term: 

                                                  𝑑(𝑏𝑐+𝑛) = 1 + log (𝑛 + 1)     (4.16) 

biases ℎ𝐿𝑆𝐸𝑀 to favor expanding the tree using deeper leaf belief states to encourage the 

long sequences of actions necessary to gather information.  Second, the 𝑤(𝑏, 𝑎, 𝑧) terms 
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from Eq. 4.6 favor expanding the most likely leaf belief states so that planning occurs 

along the situations the agent is most likely to actually encounter when it follows the 

formed policy.  Finally, the 𝑉(𝑏𝑐+𝑛) term encourages planning to optimistically explore 

policies that have the potential to earn the greatest future cumulative rewards to setup 

planning for Stage 2 after ESU is adequately reduced (instead of becoming stuck in local 

optima where the agent fully understands the environment state but cannot earn large 

future rewards).  Of note, we consider 𝑉(𝑏𝑐+𝑛) in ℎ𝐿𝑆𝐸𝑀 instead of the selector 𝑤(𝑏, 𝑎) 

that only considers leaf belief states along paths always maximizing upper bound rewards 

(Eq. 4.5) as in ℎ𝐴𝐸𝑀𝑆2.  This enables ℎ𝐿𝑆𝐸𝑀 to tradeoff some reduction in upper bound 

rewards in return for less ESU, relying on planning in Stage 2 to find the best possible 

policy for maximizing cumulative rewards. 

Within ℎ𝐿𝑆𝐸𝑀, we multiply each component for two reasons.  First, it permits us 

to avoid having to normalize the values of the different components against one another, 

as we would have to do if the components were added together so that one wouldn’t 

automatically outweigh the others.  This is important because the components have vastly 

different ranges: for example, 𝐶(𝑏) has a range of [0, log 𝑆] in all environments whereas 

the range of 𝑉(𝑏) is entirely environment-specific.  Second, this practice follows in the 

tradition of other heuristics, such as state-of-the-art ℎ𝐴𝐸𝑀𝑆2 and ℎ𝐹𝐻𝐻𝑂𝑃. 

Analyzing the structure of ℎ𝐿𝑆𝐸𝑀, we note that it has several valuable properties 

for guiding planning in Stage 1 of our proposed solution.  First, each component has a 

non-negative range.  Thus, the entire product is non-negative and increases for leaf belief 

states occurring along sequences of actions that perform long sequences of information 

gathering needed by the agent in Stage 1.  Therefore, ℎ𝐿𝑆𝐸𝑀 is maximized exactly for the 
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leaf belief states that best guide planning to reduce ESU.  Second, 𝑑(𝑏𝑐+𝑛) has a 

diminishing returns property, meaning that as 𝑛 increases, 𝑑(𝑏𝑐+𝑛) increases less and 

less.  Thus, further and further increasing the depth at which the policy tree is expanded 

contributes less and less increase in the heuristic value.  This implies that the heuristic 

will avoid maximizing the depth of planning at the expense of the other components.  So 

although long sequences of information gathering are beneficial, the heuristic will still 

expand leaf belief states closer to the root of the tree if those leaf belief states offer more 

promising reductions in ESU, as desired. 

4.4.3. DHS Situational-Awareness 

Although our proposed LSEM heuristic is designed to successfully guide planning 

during State 1—ESU reduction—it is not as well designed to reduce CRU in Stage 2.  

This is because it does not directly consider CRU as measured by 𝑒(𝑏), which is 

orthogonal to ESU 𝐻(𝑏) (although high levels of 𝐻(𝑏) make it harder to reduce 𝑒(𝑏), 

c.f., Section 4.3).  Therefore, planning solely with ℎ𝐿𝑆𝐸𝑀 is not ideal.  Instead, we 

propose using different heuristics for each stage of planning to best exploit the unique 

advantages of each heuristic and produce the best quality plans. 

However, deciding which heuristic to use while planning is not a trivial problem.  

If we identify different heuristics as being best employed in different stages, such as 

ℎ𝐿𝑆𝐸𝑀 in Stage 1 and ℎ𝐴𝐸𝑀𝑆2 in Stage 2, then the agent must be aware of which stage it is 

currently in while planning so that it knows which heuristic to use to guide policy tree 

expansion.   

Ideally, we could just add our ℎ𝐿𝑆𝐸𝑀 heuristic to existing algorithms that already 

consider multiple heuristics to improve online POMDP planning.  As briefly described in 
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Section 4.2.2, the FHHOP algorithm (Zhang & Chen, 2012) was the first heuristic search 

online POMDP algorithm to tradeoff between different heuristics during planning.  In 

FHHOP, the algorithm learns which heuristic to use (ℎ𝐴𝐸𝑀𝑆2 or ℎ𝐹𝐻𝐻𝑂𝑃) based on their 

past successes in reducing CRU.   Unfortunately, this approach has two key problems that 

prevent it from being readily adapted to accept other heuristics, such as ℎ𝐿𝑆𝐸𝑀.  First, 

FHHOP relies on the fact that both heuristics it considers are working towards the same 

goal—CRU reduction by minimizing 𝑒(𝑏).  Thus, their learned past successes can be 

directly compared—the agent can compare how well each reduced a single objective: 

𝑒(𝑏).  Since other heuristics such as ℎ𝐿𝑆𝐸𝑀 are working towards a different goal with a 

different objective, it is unclear how to compare the success of ℎ𝐿𝑆𝐸𝑀 in reducing ESU 

𝐻(𝑏) against the success of ℎ𝐴𝐸𝑀𝑆2 or ℎ𝐹𝐻𝐻𝑂𝑃 in reducing CRU 𝑒(𝑏).  Second, both 

ℎ𝐴𝐸𝑀𝑆2 and ℎ𝐹𝐻𝐻𝑂𝑃 measure very similar information about leaf belief states: (1) error 

bound 𝑒(𝑏𝑐+𝑛), (2) the probability of observations leading to 𝑏𝑐+𝑛, and (3) whether or 

not the path from the root node 𝑏𝑐 to 𝑏𝑐+𝑛 is optimal (or near optimal) with respect to the 

upper or lower bounds on cumulative rewards.  Thus, the two heuristics naturally have 

the same ranges and do not require any kind of normalization to compare their values 

when choosing a heuristic for policy tree expansion.  Other heuristics such as ℎ𝐿𝑆𝐸𝑀 have 

very different ranges, and it is unclear how to normalize each heuristic to make any 

comparisons between their values fair and impartial.  Together, these problems make it 

very difficult to add additional heuristics to FHHOP without modifying the way the 

algorithm chooses between heuristics when expanding the agent’s policy tree. 

Identifying Current Stage. To decide instead how to select which heuristic to use 

for guiding planning based on the agent’s current situation (either Stage 1 or Stage 2), we 
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start by considering the differences between the two proposed stages for planning.  We 

observe that in Stage 1, the key objective is to reduce the agent’s uncertainty about the 

current state of the environment (ESU), measured by 𝐻(𝑏).  As this type of uncertainty is 

reduced, the values of 𝐻(𝑏) will change from almost pure uncertainty to very low levels 

of uncertainty.  At the same time, during Stage 1, the agent’s measure of CRU 𝑒(𝑏) will 

not change very much, as identified as a key problem for state-of-the-art heuristics in 

Section 4.3.  Therefore, in Stage 1, 𝐻(𝑏) will change much more than 𝑒(𝑏). 

Likewise, in Stage 2, the key objective is to reduce the agent’s uncertainty about 

its cumulative rewards (CRU), measured by 𝑒(𝑏).  As this type of uncertainty is reduced, 

the values of 𝑒(𝑏) will change from very high values (where the upper 𝑉(𝑏) and lower 

𝑉(𝑏) bounds are far apart) to very low values (where 𝑉(𝑏) and 𝑉(𝑏) become closer and 

closer to 𝑉∗(𝑏)), as discussed in Section 4.2.2 (for Eq. 4.3).  At the same time, the agent 

will already have low amounts of ESU 𝐻(𝑏) (which was already resolved in Stage 1), so 

this type of uncertainty will not change much.  Thus, in Stage 2, 𝑒(𝑏) will change much 

more than 𝐻(𝑏). 

Based on these observations, we can design an algorithm for choosing an 

appropriate heuristic to use to guide planning through the two stages necessary in highly 

uncertain environments. In Stage 1, when 𝐻(𝑏) is changing as the policy tree expands, 

then its additive inverse 𝐶(𝑏) is also changing, so the ℎ𝐿𝑆𝐸𝑀 values will be changing 

more than ℎ𝐴𝐸𝑀𝑆2 (which relies on 𝑒(𝑏) that does not change much in Stage 1).  

Likewise, in Stage 2, 𝑒(𝑏) is changing as the policy tree expands, so ℎ𝐴𝐸𝑀𝑆2 will be 

changing more than ℎ𝐿𝑆𝐸𝑀 (which relies on 𝐶(𝑏) that does not change much in Stage 2).  

Therefore, by comparing the change in values of the heuristics, the agent can identify 
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both (1) which stage of planning it currently faces, and (2) which heuristic is most 

appropriate for that stage. 

To calculate and then compare the changes in values for the different heuristics, 

we consider the following general process, summarized in Algorithm 4.2.  For each 

ℎ𝑗 ∈ {ℎ1, ℎ2, … , ℎ𝑘} (where the agent considers 𝑘 heuristics), the agent calculates the 

heuristic value ℎ𝑗(𝑏𝑐+𝑛) for all 𝑏𝑐+𝑛 ∈ ℒ, then picks the leaf belief state maximizing each 

heuristic: 

                                                       𝑏𝑐+𝑛
𝑗

= 𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗)     (4.17) 

where the 𝑐ℎ𝑜𝑜𝑠𝑒 function is defined in Eq. 4.1.  Next, the agent compares the heuristic 

value at the chosen leaf belief state 𝑏𝑐+𝑛
𝑗

 and its parent belief state 𝑏𝑐+𝑛−1
𝑗

in the path back 

to the root of the tree 𝑏𝑐 to compute how much the (undiscounted
18

) heuristic value 

changed when the parent node 𝑏𝑐+𝑛−1
𝑗

 was expanded previously to add the chosen leaf 

belief state 𝑏𝑐+𝑛
𝑗

: 

                             𝛥ℎ𝑗
= [ℎ𝑗(𝑏𝑐+𝑛

𝑗
)/𝛾 − ℎ𝑗(𝑏𝑐+𝑛−1

𝑗
)]/ℎ𝑗(𝑏𝑐+𝑛−1

𝑗
)    (4.18) 

for heuristics that increase as the agent reduces the corresponding type of uncertainty, 

such as ℎ𝐿𝑆𝐸𝑀, and  

                              𝛥ℎ𝑗
= |ℎ𝑗(𝑏𝑐+𝑛

𝑗
)/𝛾 − ℎ𝑗(𝑏𝑐+𝑛−1

𝑗
)|/ℎ𝑗(𝑏𝑐+𝑛−1

𝑗
)    (4.19) 

for heuristics that monotonically decrease as the agent reduces the corresponding type of 

uncertainty, such as error-bound 𝑒(𝑏) based heuristics (e.g., ℎ𝐴𝐸𝑀𝑆2). 

Based on Eqs. 4.18-4.19, we observe that the higher the value of 𝛥ℎ𝑗
, both (1) the 

more the heuristic is changing, and (2) the more appropriate the heuristic is for the  

                                                           
18

 We divide the ℎ𝑗(𝑏𝑐+𝑛
𝑗

) term by 𝛾 in Eqs. 25-26 to remove the difference caused solely by discounting in 

𝑤(𝑏, 𝑎, 𝑧), as opposed to the actual change in the heuristic values. 
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ChooseLeafNodeUsing DHS(ℒ) 

// find the leaf belief states maximizing each heuristic 

for 𝑗 ∈ {1, 2, … , 𝑘} 

     𝑏𝑐+𝑛
𝑗

← 𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗)   // Eq. 4.1 

end for 

 

// compute the change in heuristic values along the chosen leaf belief states 

for 𝑗 ∈ {1, 2, … , 𝑘} 

     Compute 𝛥ℎ𝑗
 using Eq. 4.18-4.19 with 𝑏𝑐+𝑛

𝑗
 

end for 

 

// choose the heuristic with maximum change weighted by the rewards upper bound 

ℎ∗ ← 𝑛𝑢𝑙𝑙 
𝑚𝑎𝑥𝛥 ← −∞ 

for 𝑗 ∈ {1, 2, … , 𝑘} 
     // Eq. 4.20 

     𝑑ℎ𝑠 ← 𝛥ℎ𝑗
𝑉(𝑏𝑐+𝑛

𝑗
)          

     if 𝑑ℎ𝑠 > 𝑚𝑎𝑥𝛥 then 

          𝑚𝑎𝑥𝛥 ← 𝑑ℎ𝑠 

          ℎ∗ ← ℎ𝑗  

     end if 

end for 

return 𝑐ℎ𝑜𝑜𝑠𝑒(ℎ∗)              // Eq. 4.21 

Algorithm 4.2: DHS Situationally-Aware Mechanism for  

Choosing the Leaf Node to Expand in Algorithm 4.1 

current stage of planning.  On the one hand, when 𝛥ℎ𝐿𝑆𝐸𝑀
> 𝛥ℎ𝐴𝐸𝑀𝑆2

, then the agent is 

in Stage 1 and ℎ𝐿𝑆𝐸𝑀 is the better heuristic to use to reduce the agent’s most pressing 

uncertainty: ESU.  On the other hand, when 𝛥ℎ𝐴𝐸𝑀𝑆2
> 𝛥ℎ𝐿𝑆𝐸𝑀

, then the agent is in 

Stage 2 and ℎ𝐴𝐸𝑀𝑆2 is the better heuristic to use to reduce the agent’s most pressing 

uncertainty: CRU.  Moreover, state-of-the-art heuristics (AEMS2, FHHOP) and our 

LSEM heuristic each assume that the best policies occur along paths where the heuristic 

values are greatest, so the fastest improving leaves (as measured by the 𝛥ℎ𝑗
 function, Eqs. 

4.18-4.19) represent the best possible branches to expand.   Since this mechanism makes 

decisions based on the differences in heuristic values from leaf belief states to their 
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parents as a measure of the rate of change in a heuristic, we call our situationally-aware 

heuristic selection mechanism Difference-based Heuristic Selection (DHS). 

Transition between Stages.  As a final step of our mechanism for selecting 

heuristics to use to guide planning, we want to smooth out the transition between the two 

stages of planning.  That is, we want to improve planning when the agent is nearing the 

end of Stage 1 and starting to begin Stage 2.  At this point, the change in values 𝛥ℎ𝐿𝑆𝐸𝑀
 

will be decreasing towards zero (as environment certainty is resolved) and 𝛥ℎ𝐴𝐸𝑀𝑆2
 will 

be starting to increase away from zero (as CRU starts to become reduced).  When this 

happens, both heuristics look similarly appropriate (i.e., 𝛥ℎ𝐿𝑆𝐸𝑀
≈ 𝛥ℎ𝐴𝐸𝑀𝑆2

), so it 

becomes difficult to properly choose one over the other.  Moreover, towards the end of 

Stage 1 ℎ𝐿𝑆𝐸𝑀 might inspire the agent to reduce ESU farther than it needs to for ℎ𝐴𝐸𝑀𝑆2 

to finish planning the proper sequence of actions to take that maximize cumulative 

rewards, which we want to avoid. 

 

To handle this transition between planning stages, the following equation 

represents the final rule for selecting between heuristics in DHS: 

                                  ℎ∗ = argmax𝑗∈{1,2,…,𝑘} 𝛥ℎ𝑗
𝑉 (𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗))    (4.20) 

and the algorithm selects the following leaf belief state to expand in each iteration of the 

planning algorithm (Algorithm 4.1, c.f., Section 4.2.1): 

                                                    𝑏𝑐+𝑛
∗ = 𝑐ℎ𝑜𝑜𝑠𝑒(ℎ∗)     (4.21) 

The rationale behind Eqs. 4.20 and 4.21 is as follows.  Here, we optimistically 

bias the heuristic selection based on the upper bound on cumulative rewards expected 

from the leaf belief state favored by the selected heuristic (similar to optimistic biasing in 
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offline algorithms such as HSVI (Smith & Simmons, 2004) or online algorithms such as 

AEMS2 (Ross & Chaib-draa, 2007)).  Thus, when planning transitions between Stage 1 

and Stage 2 and the 𝛥ℎ𝑗
 values for the heuristics approach one another, the agent favors 

planning along paths of actions that have the potential to lead to greater cumulative 

future rewards, since earning such rewards is the ultimate goal of the agent (towards 

which the agent strives in Stage 2 of planning). 

Of note, our situationally aware DHS solution is somewhat related to another 

POMDP planning algorithm used in the context of multiagent I-POMDPs: bimodal 

switching (Sonu & Doshi, 2013).  In particular, Sonu & Doshi’s solution metacognitively 

analyzes the agent’s CRU to decide how to plan: either in the simpler single agent case 

(to quickly reduce CRU) or in the more complicated multiagent case (to achieve even 

greater rewards by taking into account other agents’ actions).   Our DHS solution is 

similar in that it also metacognitively chooses how to plan to reduce uncertainty (both 

ESU and CRU), but we do not consider CRU directly when switching stages, nor do we 

consider multiagent planning.  Instead, we improve single agent planning by splitting 

planning into stages each considering the same complexity but different objectives, rather 

than different complexities (single agent vs. multiagent) with the same objective. 

4.4.4. Theoretical Analysis 

Finally, now that we have described our solution consisting of both the LSEM 

heuristic and DHS algorithm for choosing the heuristic to guide planning, we discuss the 

theoretical properties of the solution.  

Namely, recall from Section 4.2.2 that state-of-the-art heuristic search online 

POMDP planning algorithms AEMS2 (Ross & Chaib-draa, 2007) and FHHOP (Zhang & 
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Chen, 2012) have the beneficial property of being 𝜖-optimal, meaning that they can 

return a policy with expected value within a desired 𝜖 of the value of the optimal policy 

using only a finite (albeit possibly large) amount of time for planning.  Thus, given 

enough planning time, the algorithms are guaranteed to find a very good approximation 

of the optimal policy (we reuse notation here to term such a policy an 𝜖-optimal policy), 

which is a desirable property of an anytime planning algorithm.  We desire that our 

solution also have this property. 

Unfortunately, the DHS approach to selecting the leaf belief state to expand as 

presented in Algorithm 4.2 (used as Step 1 of Algorithm 4.1) and defined by Eqs. 4.20-

4.21 cannot guarantee this property in its current form.  This is due to (1) the inclusion of 

the ℎ𝐿𝑆𝐸𝑀 heuristic that is only designed to reduce ESU and will not necessarily reduce 

CRU to less than a desired 𝜖 throughout the policy tree, and (2) we cannot guarantee that 

DHS will not choose ℎ𝐿𝑆𝐸𝑀 an infinite number of times and in turn not choose ℎ𝐴𝐸𝑀𝑆2 

often enough to find an 𝜖-optimal policy.  Therefore, we cannot guarantee that DHS is 𝜖-

optimal, but in practice (as we will test in the following experimental setup) it still should 

call ℎ𝐴𝐸𝑀𝑆2 sufficiently often to properly guide planning toward good estimations of 

cumulative rewards. 

On the other hand, we can modify Eq. 4.20 slightly to produce variants of DHS 

that are guaranteed to be 𝜖-optimal.  We propose two such variants here: (1) DHS-m, and 

(2) SoftMaxDHS. 

First, DHS-m is a minor modification of Eq. 4.20 that deterministically forces 

ℎ𝐴𝐸𝑀𝑆2 to be chosen often enough to guarantee that the algorithm is 𝜖-optimal: 

                                  ℎ∗ = { 
ℎ𝐴𝐸𝑀𝑆2                        if 𝑁 mod 𝑚 = 0
ℎ∗ selected by Eq. 4.20     otherwise

    (4.22) 
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where 𝑁 is the number of times the policy tree has been expanded and 𝑚 ∈ ℕ is any 

natural number.  For DHS-m, we find that: 

Theorem 4.1: DHS-m using Eq. 4.22 is 𝜖-optimal, so long as ℎ𝐴𝐸𝑀𝑆2 is 

one of the heuristics available to the selection mechanism. 

Proof: Let 𝜖 be given. AEMS2, which also follows Algorithm 4.1, is 𝜖-optimal, 

so it will find an 𝜖-optimal policy in a finite number of iterations 𝑀 < ∞.  Hence, 

choosing ℎ𝐴𝐸𝑀𝑆2 within 𝑀 iterations in Step 1 of the loop in Algorithm 4.1 results in a 𝜖-

optimal policy. DHS-m is guaranteed to choose ℎ𝐴𝐸𝑀𝑆2 𝑀 times within 𝑚𝑀 iterations, 

simulating at worst the behavior of AEMS2 during the 𝑀 iterations that ℎ𝐴𝐸𝑀𝑆2 is 

selected.  We know that 𝑚𝑀 < ∞ since 𝑚 ∈ ℕ and 𝑀 < ∞, so DHS-m will also find an 

𝜖-optimal policy in finite time.  Since 𝜖 was arbitrary, DHS-m is 𝜖-optimal.                    ∎                                       

The value chosen for 𝑚 in DHS-m (Eq. 4.22) has several important implications 

on the behavior of the algorithm.  With a smaller 𝑚, the upper bound on the number of 

iterations (𝑚𝑀) required to find an 𝜖-optimal policy in a smaller than using a larger 𝑚.  

However, a smaller 𝑚 also causes ℎ𝐴𝐸𝑀𝑆2 to be chosen much more often than it might be 

in original DHS (and thus used more often in Stage 1 of planning where it is less 

effective than ℎ𝐿𝑆𝐸𝑀).  As a result, DHS-m might be less efficient in practice, where a 

greater use of ℎ𝐿𝑆𝐸𝑀 in Stage 1 could speed up planning by focusing policy tree 

expansion around the necessary long sequences of information gathering actions needed 

to reduce ESU. 

As a starting point (also used in our experimental setup to follow), we suggest 

setting 𝑚 = 𝑘, the number of heuristics considered by the selection mechanism, in DHS-

m.  In the future, we intend to explore methods for adapting this parameter within the 

algorithm, rather than requiring a static choice in advance.  For example, 𝑚 could be set 
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proportional to 𝐻(𝑏𝑐), where a larger 𝑚 would occur when the agent’s current belief is 

most uncertain about the current state of the environment, allowing the algorithm to rely 

more often on ℎ𝐿𝑆𝐸𝑀 which addresses its greatest need.  Likewise, a smaller 𝑚 would 

occur when the agent is more certain about the environment, and ℎ𝐴𝐸𝑀𝑆2 (which is 

chosen more often when 𝑚 is small) is more useful for guiding planning.  Alternatively, 

when the agent is facing high costs for actions, a smaller 𝑚 would enable the agent to 

focus more on improving its estimates of cumulative rewards to reduce overall costs by 

choosing ℎ𝐴𝐸𝑀𝑆2 more often. 

Second, in contrast to deterministic DHS-m, SoftMaxDHS represents a stochastic 

variant of DHS that relies on the values of 𝛥ℎ𝑗
𝑉 (𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗)) to have a greater 

influence on the heuristic selected, following closer in spirit to the original DHS 

mechanism.   In SoftMaxDHS, we replace Eq. 4.20 with: 

                                     ℎ∗~𝑃(ℎ𝑗) =
𝑒

𝛥ℎ𝑗𝑉(𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗))/𝛵

∑ 𝑒
𝛥ℎ𝑖𝑉(𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑖))/𝛵 

𝑖∈{1,2,…,𝑘}

     (4.23) 

Here, ℎ∗ is randomly sampled according to a probability distribution 𝑃(ℎ𝑗).  We 

call this approach SoftMaxDHS because it uses the softmax function (commonly used in 

reinforcement learning and elsewhere in the agents literature, e.g. (Kaelbling, Littman, & 

Moore, 1996; Sutton & Barto, 1998)) to determine the Boltzmann (or Gibbs) probability 

distribution 𝑃(ℎ𝑗).  Two key properties of this probability distribution are: (1) the 

probability of sampling ℎ𝑗  increases as 𝛥ℎ𝑗
𝑉 (𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗)) increases, fitting with the 

original definition of DHS and Eq. 4.20, and (2) the probability of each ℎ𝑗  is always 
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greater than 0 since 𝛥ℎ𝑗
𝑉 (𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗)) is always finite and thus 𝑒

𝛥ℎ𝑗𝑉(𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗))/Τ 
>

0. 

Given Eq. 4.23, we find that: 

Theorem 4.2: SoftMaxDHS is 𝜖-optimal, so long as ℎ𝐴𝐸𝑀𝑆2 is one of the 

heuristics available for selection. 

Proof: The original proof by Ross, Pineau, & Chaib-draa (2008) for the 𝜖-

optimality of AEMS2 contains a theorem (Theorem 2 (Ross, Pineau, & Chaib-draa , 

2008)) stating that if the path from the root belief state 𝑏𝑐 consisting only of actions with 

maximal 𝑄 has a non-zero probability of being expanded in Step 1 of each iteration of 

Algorithm 4.1, then the algorithm is 𝜖-optimal.  We know that ℎ𝐴𝐸𝑀𝑆2 only selects such 

paths for expansion due to the 𝑤(𝑏, 𝑎) component.  Thus, the probability of ℎ𝐴𝐸𝑀𝑆2 

choosing such a path for expansion is 1.0.  Moreover, in SoftMaxDHS, we know that the 

probability of ℎ𝐴𝐸𝑀𝑆2 being used to guide policy tree expansion is 𝑃(ℎ𝐴𝐸𝑀𝑆2) > 0.  

Hence, in each iteration of Algorithm 4.1, SoftMaxDHS chooses to expand the path from 

the root belief state 𝑏𝑐 consisting only of actions with maximal 𝑄 with probability 

𝑃(ℎ𝑗) > 0.    Since this probability is non-zero, SoftMaxDHS is 𝜖-optimal.                    ∎ 

Like with DHS-m, the behavior of SoftMaxDHS depends on an internal 

parameter 𝛵.  Here, as in other softmax-based algorithms, 𝛵 defines how sensitive the 

probability distribution 𝑃(ℎ𝑗) is to the values of 𝛥ℎ𝑗
𝑉 (𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗)).  The smaller the 𝛵, 

the more greedily the distribution favors the heuristic ℎ𝑗  with the greatest 

𝛥ℎ𝑗
𝑉 (𝑐ℎ𝑜𝑜𝑠𝑒(ℎ𝑗)).  On the other hand, the larger the 𝛵, the closer the distribution 

approaches a uniform distribution.  In practice, the best value of 𝛵 depends on the 
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environment (and the range of values of 𝑉), so this parameter would need to be fine-

tuned for each environment.  We perform such fine-tuning in our experiments to follow. 

4.5. Experimental Setup 

To evaluate the performance of our solution contributing the LSEM heuristic and 

DHS algorithm, we conducted an experimental study using several commonly used, well-

known POMDP benchmark problems: AUVNavigation (Ong et al., 2010), Tag (Pineau, 

Gordon, & Thrun, 2003), and RockSample (Smith & Simmons, 2004).  These 

benchmarks vary in their complexity and level of uncertainty, as described below.  The 

goals of our study were (1) to demonstrate the problems associated with online POMDP 

planning in highly uncertain domains, (2) evaluate the ability of our solution (and the 

variants of DHS discussed in Section 4.4.4) to improve such planning by splitting 

planning into two stages for addressing the two main types of uncertainty facing the agent 

(ESU and CRU), and (3) evaluate the ability of our solution to adapt to the environment 

by studying how well it performs when the agent doesn’t face high levels of ESU, 

contrary to the rationales for its design. 

First, in the AUVNavigation benchmark (Ong et al., 2010), an autonomous 

underwater vehicle must navigate through a 3D grid (with size 20 × 7 × 4) to move from 

an unknown starting location, through a maze of dangerous rocks that could destroy the 

vehicle, to either of two known goal locations (on the opposite side of the world from the 

starting location). To reach a goal location, the agent can perform six actions: Stay and 

not move at all, turn Up, Down, Left, or Right to change its 3D orientation, or move 

Forward along its current orientation.  The agent might change location after every 

action, even if it doesn’t move forward, due to dynamic underwater currents.  The agent 
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can always fully observe its depth and orientation in the grid, but its (𝑥, 𝑦) position is 

hidden from the agent unless it goes to the surface of the water, in which case it incurs a 

high cost (-50) in return for a perfect observation about its (𝑥, 𝑦) location using a GPS 

sensor.  When the agent is not on the surface, it instead receives one of four observations 

in every other state: Rock if it hits a rock, End if it reaches a goal location, Blind in every 

other location, and Terminal upon ending execution.  Moving incurs increasing costs 

based on the number of dimensions the agent moves in according to its orientation (-1 for 

one dimension, -1.44 for two dimensions, -1.73 for three dimensions), hitting a rock 

incurs a much larger cost (-500) and ends execution on the next step, but reaching a goal 

location earns a very large reward (+5000) and also ends execution on the next step.  The 

agent’s goal is to reach the goal location as fast as possible while minimizing costs for 

moving around.  

Second, in the Tag benchmark (Pineau, Gordon, & Thrun, 2003), a robotic agent 

moves in a 2D grid (consisting of 29 possible locations) in order to find and tag an 

opponent robot.  The tagger can move in each cardinal direction (North, South, East, 

West) as well as try and Tag the opponent, which succeeds if both agents are in the same 

location.  Movement is deterministic and incurs a cost of -1, whereas successfully tagging 

the opponent earns a reward of +10 and ends execution, but an unsuccessful Tag action 

incurs a cost of -10.  The tagger always fully observes its own location, but the 

opponent’s location is hidden from the tagger robot, and the tagger can only receive one 

of two observations after each action: True if both robots are in the same location, and 

False in all other states.  The opponent, on the other hand, fully observes the tagger robot 
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and tries to move away from the tagger in each time step.  The tagger’s goal is to find and 

tag the opponent as fast as possible. 

Finally, in the RockSample benchmark (Smith & Simmons, 2004), a robotic agent 

must navigate through a 𝑔 × 𝑔 2D grid containing 𝑘 rocks.  In our study, we consider the 

popular setting of 𝑔 = 7 and 𝑘 = 8 (e.g., Ross & Chaib-draa, 2007; Ross et al., 2008; 

Silver & Veness, 2010; Somani et al., 2013; Zhang & Chen, 2012).  The robot always 

fully observes its current location, but the quality of the 𝑘 rocks are hidden by the 

environment’s partial observability.  The robot is tasked with identifying and sampling 

rocks with good quality and not sampling rocks with bad quality.  To accomplish this 

goal, the agent can move in each cardinal direction (North, South, East, West), check the 

quality of each rock (using a separate Check action for each of the 𝑘 rocks), or Sample 

the rock in the robot’s current location. Execution ends whenever the robot moves off the 

east side of the grid.  Checking the quality of a rock returns an observation about that 

rock from the set 𝑍 = {𝐺𝑜𝑜𝑑, 𝐵𝑎𝑑}, where the accuracy of the observation depends on 

the robot’s distance from the rock (where farther distances 𝑑 produce less accurate 

observations according to accuracy function 𝑎𝑐𝑐 = 0.5 + 2−1−
𝑑

20).  All other actions 

produce the same observation (Bad).  The robot earns a reward for Sampling good rocks 

of +10, a penalty of Sampling bad rocks of -10, and a reward of +10 for moving off the 

grid to end execution.  Each rock automatically changes state to Bad after it is sampled to 

prevent the robot from sampling the same rock multiple times.  The robot’s goal is to 

sample all (and only) good rocks, then exit the grid as fast as possible. 

Comparing these three benchmarks, we note that they differ in their levels of 

uncertainty, especially ESU, making them an interesting range of environments for 
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evaluating our solution approach.  Specifically, both AUVNavigation and Tag are highly 

uncertain environments, whereas RockSample has much lower levels of ESU.  

In particular, the agent in AUVNavigation faces high levels of ESU because it 

only receives observations about its (𝑥, 𝑦) location in a small number of states (i.e., along 

the surface of the water), which is necessary knowledge for planning a series of 

movement actions to reach a goal location.  Indeed, the fact that the majority of locations 

(i.e., non-surface, non-rock, and non-goal locations) produce the same observation 

(Blind) means that most observations do not improve the agent’s beliefs about the hidden 

environment state (including the agent’s location), as discussed in Section 4.3.  Instead, 

the agent must plan a lengthy sequence of information gathering actions in order to just 

discover the (𝑥, 𝑦) location (e.g., by turning and moving to the surface of the water) 

before it can plan actions needed to reach the goal location.  Moreover, this sequence of 

information gathering actions incurs costs for both moving and surfacing, causing such 

actions fail to maximize the initial upper and lower bounds on cumulative rewards.  

Therefore, AUVNavigation is a prime example of the highly uncertain environments 

studied in this research.   

Similar to AUVNavigation, Tag is also highly uncertain because the tagger robot 

rarely knows the location of the opponent (unless they are in the same location), and most 

states produce the same observation, which prevents the belief updates (Eq. 2.4) from 

being very informative (c.f., Section 4.3).  Thus, Tag might also benefit from splitting 

planning into two stages to enable the tagger agent to plan to reduce ESU (i.e., the 

location of the opponent) before reducing CRU.  However, as hypothesized in Section 
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4.3, Tag might also not need special treatment, in spite of high levels of ESU, because the 

problem is relatively small (as compared below). 

Unlike AUVNavigation and Tag, RockSample is not highly uncertain because the 

agent can improve its understanding of the current environment state from any state 

through the various Check actions.  Moreover, the although the accuracy of the 

observations depends on the distance between the robot and a rock—meaning 

observations for some states are less accurate than others—the minimal possible accuracy 

is still pretty high for 𝑔 = 7: 0.5 + 2−1−
12

20 = 83%. Thus, the agent only needs very short 

sequences of information gathering actions in order to reduce its uncertainty about the 

quality of each rock, and thus its ESU. 

Further comparing these three benchmarks, we note that they also differ greatly in 

their complexity.  First, AUVNavigation is the most complex, containing 13,536 states 

(describing the vehicle’s location, depth, and orientation), 6 actions, and most notably, 

144 possible observations.  Second, RockSample is moderately complex, containing 

12,545 states (describing the robot’s location and the quality of the 8 rocks), 13 actions, 

and only 2 observations.  Finally, Tag is the least complex, containing only 870 states 

(describing the tagger and opponent’s locations), 5 actions, and only 2 observations. 

To evaluate the ability of our DHS solution (and variants
19

) to perform online 

POMDP planning in these three benchmarks, we measured success using the cumulative, 

discounted rewards actually earned by the agent while operating in the environment: 

                                                                ∑ 𝛾𝑡𝑟𝑡
∞
𝑡=0       (4.24) 

                                                           
19

 For DHS-m, we used the setting of 𝑚 = 2 since we considered two heuristics during planning (one per 

stage).  For SoftMaxDHS, we optimized the 𝛵 parameter per benchmark by first searching in steps of 10, 

then within a step of 10, using 𝜏 = 5000 for AUVNavigation and 𝜏 = 100 for Tag and RockSample.  This 

resulted in 𝛵 = 0.5, 1000, 2 for AUVNavigation, Tag, and RockSample, respectively. 
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as typically used to evaluate POMDP planning, with the common setting of 𝛾 = 0.95.  

Using this measure, we compared the performance of each of our DHS variants (using 

both ℎ𝐿𝑆𝐸𝑀 and ℎ𝐴𝐸𝑀𝑆2 as the two heuristics used for planning) against the state-of-the-

art heuristic search online POMDP planning algorithms: AEMS2 (Ross & Chaib-draa, 

2007) and FHHOP (Zhang & Chen, 2012) (c.f., Section 4.2.2).  For the sake of 

completeness, we also compared against the state-of-the-art Monte Carlo search 

algorithms for online POMDP planning: ABDESPOT (Anytime Basic DEterminized 

Sparse Partially Observable Tree) and ARDESPOT
20

 (Anytime Regularized 

DEterminized Sparse Partially Observable Tree) (Somani et al., 2013), which represent 

the other state-of-the-art algorithms in online POMDP planning.  These Monte Carlo 

algorithms consider very similar information as AEMS2 when guiding online planning, 

except they use random sampling of state transitions for action sequences both to 

estimate cumulative rewards and approximate the agent’s belief state using a particle 

filter (i.e., an approximation of the belief state probability distribution using frequentist 

counting of randomly sampled next states, used to speed up planning in environments 

with large state spaces).  Finally, we also considered an algorithm using only our LSEM 

heuristic to guide planning to gain insights into the usefulness of this heuristic alone.  To 

ensure fair comparison, all approaches used FIB and Blind (Hauskrecht, 2000) to 

calculate the upper and lower bounds on leaf belief states 𝑉(𝑏𝑐+𝑛) and 𝑉(𝑏𝑐+𝑛).  

For each benchmark, we considered a range of amounts of time allocated for 

planning 𝜏 in order to better understand how well each online planning algorithm handles 

                                                           
20

 For ARDESPOT, we reused the 𝜆 regularization parameter  suggested by Somani et al. in their 

implementation for Tag (𝜆 = 0.01) and RockSample (𝜆 = 0.1), available at 

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.DownloadDespot , and found an 

appropriate value through experimentation for AUVNavigation (𝜆 = 0.1) 

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.DownloadDespot


www.manaraa.com

 
 

159 

different time constraints in different types of environments (highly uncertain vs. less 

uncertain, more complex vs. less complex): 𝜏 = {5, 10, 50, 100, 500, 1000} ms for Tag 

and RockSample and 𝜏 = {50, 100, 500, 1000, 5000, 10000, 15000, 20000} ms for the 

more complex and uncertain AUVNavigation.  Shorter planning times also inform us 

how well the agent does at the beginning of each planning step, and longer planning 

times inform us how well the agent’s planning improves with more time allocated for 

planning.  Since our DHS solution with LSEM heuristic was designed to speed up 

planning in highly uncertain environments, we expected it to produce greater rewards in 

less planning time in highly uncertain environments AUVNavigation and Tag.  If the 

DHS mechanism (and its variants) indeed chooses an appropriate heuristic based on the 

agent’s current need, we also expected it to perform well in RockSample by simply 

relying on ℎ𝐴𝐸𝑀𝑆2 since ℎ𝐿𝑆𝐸𝑀 is unnecessary. 

Since we varied the amount of time allocated for planning in each benchmark, we 

ran all experiments on a fixed computer.  This machine contained an Intel i5 (Haswell) 

3.4GHz Quad Core processor (using one thread per experiment) with 8 GB of memory 

(3GB were allocated for planning).  Each benchmark and algorithm was implemented in 

Java.  We ran each time constraint and algorithm pair for 1,000 runs using different 

random seeds (with only 100 runs for the more time consuming AUVNavigation) and 

report 95% confidence intervals around the average cumulative rewards actually earned 

by the agent (Eq. 4.24).  We allowed each run to execute for up to 200 chosen actions, 

after which we stopped execution since each problem should be solvable in far fewer 

steps and runs of longer than 200 steps were not goal directed.  To speed up planning, we 

employed the state-of-the-art MOMDP (Ong et al., 2010) representation for each 
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benchmark POMDP (c.f., Section 4.2.2), with model parameters based on the POMDPX 

configuration files available online at the Approximate POMDP Planning Toolkit Dataset 

Repository
21

. 

4.6. Results 

In this section, we present and discuss the results of our experimental study 

described in Section 4.5.  First, we evaluate the results in each individual benchmark 

problem.  Then, we summarize the results across all benchmarks and highlight important 

discoveries and conclusions. 

4.6.1. AUVNavigation Results 

We begin our results analysis by considering the most complex and highly 

uncertain environment—AUVNavigation—since this type of environment is exactly what 

our DHS solution with LSEM was designed to address.  We present the results of each 

online POMDP planning algorithm on this benchmark in Table 4.1. 

From these results, we make several important observations.  First, we observe 

that the state-of-the-art heuristic search algorithms AEMS2 and FHHOP indeed suffered 

greatly in this highly uncertain environment, unless given large amounts of time for 

planning 𝜏.  That is, when the agent has less than 10 seconds to plan for each action, the 

agent earned very minimal rewards close to 0 due to random, non-goal directed behavior 

(i.e., it did not find value in spending cost for moving forward—either towards 

information or a goal location—and instead routinely performed random, costless actions 

until possibly drifting into a rock).  Recall that in AUVNavigation, the agent starts from 

an initial unknown location and must first discover where it is to know how to find a  

                                                           
21

 http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.Repository 

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.Repository
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Table 4.1: Results on AUVNavigation Benchmark with 95% Confidence Intervals 

AUVNavigation 

|𝑆| = 13,536  |𝒳| = 96  |𝒴| = 141  |𝐴| = 6  |𝑍| = 144 

Algorithm 
𝜏 (ms) 

50 100 500 1000 5000 10000 15000 20000 

AEMS2 
-2.1 

± 1.3 

-4.4 

± 6.6 

-4.7 

± 6.6 

-4.7 

± 6.6 

-1.5 

± 0.7 

928.4 

± 107.6 

927.7 

± 107.7 

928.4 

± 107.6 

FHHOP 
-5.8 

± 6.8 

-4.4 

± 6.6 

-5.1 

± 6.6 

-2.9 

± 1.9 

-2.6 

± 1.8 

468.2 

± 94.2 

871.8 

± 108.1 

928.4 

± 107.6 

LSEM 
248.7 

± 111.4 

308.5 

± 119.3 

385.8 

± 104.9 

414.9 

± 83.1 

427.5 

± 109.4 

420.4 

± 109.5 

420.4 

± 109.5 

420.4 

± 109.5 

DHS 
273.6 

± 121.1 

353.0 

± 117.6 

526.0 

± 100.8 

588.2 

± 103.5 

501.8 

± 104.8 

572.0 

± 91.9 

517.7 

± 102.4 

927.4 

± 107.5 

DHS-m 
165.3 

± 123.1 

322.7 

± 126.6 

445.4 

± 106.5 

588.2 

± 103.5 

501.8 

± 104.8 

572.0 

± 91.9 

927.4 

± 107.5 

927.4 

± 107.5 

SoftMaxDHS 
268.8 

± 123.6 

361.1 

± 114.7 

545.0 

± 103.4 

585.1 

± 108.1 

652.2 

± 100.9 

652.2 

± 100.9 

565.3 

± 102.6 

575.2 

± 98.8 

ABDESPOT 
595.9 

± 107.0 

478.7 

± 108.0 

300.8 

± 86.5 

416.9 

± 90.2 

1007.0 

± 83.0 

969.5 

± 86.4 

878.7 

± 106.3 

1001.8 

± 84.6 

ARDESPOT 
24.7 

± 26.0 

48.2 

± 29.5 

321.9 

± 76.1 

460.1 

± 72.0 

922.5 

± 96.6 

988.3 

± 86.7 

961.2 

± 100.3 

965.0 

± 95.7 

sequence of actions moving the agent to a goal location.  Thus, the agent has a high 

amount of ESU that needs to be reduced through long sequences of information gathering 

actions before it can plan actions ultimately maximizing its cumulative rewards.  As 

discussed in Section 4.3, this results in the error bounds on cumulative rewards 𝑒(𝑏) 

being difficult to reduce until ESU is reduced, causing the lack of goal-directed behavior. 

Instead, when using state-of-the-art heuristic search algorithms, the agent had to plan for 

a long time in order to find policies that appropriately reduced the agent’s ESU so that it 

could also plan a path from its initial location to a goal location and earn large cumulative 

rewards. 

Next, we compare the performance of our LSEM heuristic alone against the state-

of-the-art heuristic search algorithms.  Even though LSEM is only designed to guide 

agent planning in Stage 1 (and does not necessarily reduce CRU in Stage 2), we observe 

a significant improvement in agent behavior when planning times were most constrained 
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(𝜏 = 50, 100, 500, 1000, 5000 ms) compared to AEMS2 and FHHOP.  Instead of 

random, non-goal directed behavior, the agent formed and executed plans that not only 

reduced ESU, but then also led the agent to a goal location, where it earned the only 

possible positive rewards.  This result implies that ℎ𝐿𝑆𝐸𝑀 also has some value in Stage 2 

of planning in highly uncertain environments.  However, the cumulative rewards earned 

using LSEM alone were not as high as the state-of-the-art algorithms for the least 

constrained planning times (𝜏 ≥ 10000 ms).  This imples that although LSEM can 

perform somewhat admirably in Stage 2, it cannot completely reduce CRU to the point 

that such rewards are ultimately optimized.  Hence the need for our DHS solution. 

Moving on to our DHS solution variants combining ℎ𝐿𝑆𝐸𝑀 for Stage 1 of planning 

(ESU reduction) and ℎ𝐴𝐸𝑀𝑆2 for Stage 2 of planning (CRU reduction), we observe much 

better performance when planning time was most constrained (e.g., 

𝜏 = 50, 100, 500, 1000, 5000 ms) compared to AEMS2, FHHOP, and LSEM.  

Particularly, we observe that all three variants (DHS, DHS-m, and SoftMaxDHS) 

achieved positive rewards at least 200 times faster than the state-of-the art heuristic 

search algorithms AEMS2 and FHHOP, implying that our solution (and its variants) can 

successfully control planning in highly uncertain environments.  That is, our solution 

enabled the agent to reduce the necessary types of uncertainty at the right times in order 

to create plans leading the agent to reach a goal location and earn the only positive 

reward in the benchmark.  Success with planning times as small as 50 ms is rather 

noteworthy since a successful run requires over 20 actions just to navigate from the initial 

starting location to the goal location, not counting actions to resolve ESU, which is quite 

deep given the complexity of this benchmark.   
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Furthermore, we observe that DHS always performed better than either AEMS2 

or LSEM alone for these constrained planning times (𝜏 < 10000 ms).  This implies that 

splitting planning into stages, then using situational-awareness to choose appropriate 

heuristics for each stage, improves the agent’s ability to efficiently and effectively plan 

policies leading to successful behavior than using either heuristic alone. 

Additionally, we also observe that the performance of DHS (and its variants) 

generally improved as more and more time was allocated, as we desire out of an anytime 

algorithm.  Moreover, both DHS and DHS-m also reached the same very high cumulative 

rewards (over 900) as the state-of-the-art heuristic search online POMDP planning 

algorithms AEMS2 and FHHOP, although our solution required a little more time to 

reach such high rewards (15,000 ms for DHS-m and 20,000 ms for DHS vs. 10,000 ms 

for AEMS2).  This is somewhat expected from our theoretical results in Section 4.4.4 

(especially the discussion on DHS-m), and in the future we intend to explore additional 

ways to further speed up the increase in reward accumulation by agents planning with 

DHS and LSEM.  

Finally, comparing the performance of our solution against the state-of-the-art 

Monte Carlo search online POMDP planning algorithms ABDESPOT and ARDESPOT, 

we observe mixed results.  First, we observe that our solution and each of its variants 

(DHS, DHS-m, SoftMaxDHS) outperformed ARDESPOT for each of the most constrained 

planning times (𝜏 = 50, 100, 500, 1000 ms) and the simpler, non-regularized 

ABDESPOT for several of the same constraints (𝜏 = 500, 1000).  Ultimately, each of 

these solutions achieved similar performance for the greatest amounts of planning, 

although the ABDESPOT and ARDESPOT approaches reached high levels sooner and  
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Table 4.2: Results on Tag Benchmark with 95% Confidence Intervals 
Tag 

|𝑆| = 870  |𝒳| = 30  |𝒴| = 29  |𝐴| = 5  |𝑍| = 2 

Algorithm 
𝜏 (ms) 

5 10 50 100 500 1000 

AEMS2 -5.78 ± 0.38 -5.70 ± 0.38 -5.44 ± 0.39 -5.73 ± 0.38 -5.50 ± 0.40 -5.49 ± 0.38 

FHHOP -8.17 ± 0.42 -8.26 ± 0.42 -6.53 ± 0.38 -6.46 ± 0.38 -5.95 ± 0.37 -5.90 ± 0.38 

LSEM -48.85 ± 1.60 -48.49 ± 1.62 -49.88 ± 1.61 -49.56 ± 1.58 -43.55 ± 1.29 -41.59 ± 1.21 

DHS -21.56 ± 1.27 -21.68 ± 1.26 -12.08 ± 0.75 -10.25 ± 0.65 -8.84 ± 0.48 -7.03 ± 0.40 

DHS-m -6.03 ± 0.41 -6.20 ± 0.41 -5.90 ± 0.37 -5.54 ± 0.38 -5.87 ± 0.38 -6.06 ± 0.38 

SoftMaxDHS -9.57 ± 0.60 -9.27 ± 0.58 -6.69 ± 0.40 -5.97 ± 0.40 -6.17 ± 0.37 -6.03 ± 0.38 

ABDESPOT -11.65 ± 0.43 -12.27 ± 0.40 -7.22 ± 0.37 -6.51 ± 0.38 -5.77 ± 0.38 -5.92 ± 0.38 

achieved slightly greater overall rewards.  Given that these Monte Carlo search 

algorithms were the best of the previously reported online POMDP planning algorithms 

and operate differently than heuristic search, our approach represents a new heuristic 

search algorithm that starts to bridge the gap between Monte Carlo search algorithms 

and heuristic search algorithms on such a difficult problem. 

4.6.2. Tag Results 

Next, we analyze the results of our experiments on the Tag benchmark.  Recall 

that Tag is also a highly uncertain environment, since the agent can only observe the 

location of the opponent it seeks when they are in the same location.  However, Tag is 

also much less complex than AUVNavigation—containing an order of magnitude fewer 

states and two orders of magnitude fewer observations.  We present the results on this 

benchmark in Table 4.2. 

From these results, we first observe that the state-of-the-art heuristic search 

algorithm AEMS2 performed quite well on this benchmark, achieving both (1) the best 

performance for most of the time constraints, and (2) quite consistent performance across 

all time constraints, even performing almost as well with only 5 ms of planning time 

compared to 1000 ms of planning time.  Similarly, the other state-of-the-art heuristic 
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search algorithm, FHHOP, also performed quite well, especially with 𝜏 ≥ 50 ms 

planning time.  Thus, we confirm our suspicion that although this benchmark is highly 

uncertain, it is not complex enough to warrant special solutions to handle ESU and CRU 

separately. 

However, we still observe that our DHS-m solution variant performed almost as 

well as AEMS2, partially due to its bias to rely on ℎ𝐴𝐸𝑀𝑆2 more often than DHS (Eq. 

4.22) and partially due to its correct selection of heuristics.  Similar in performance to 

FHHOP, SoftMaxDHS also performed very well with 𝜏 ≥ 50 ms planning time, in spite 

of no bias towards relying often on ℎ𝐴𝐸𝑀𝑆2.  Thus, both of these 𝜖-optimal variants still 

properly guided planning to performances very close to the state-of-the-art heuristic 

search algorithms. 

On the other hand, our DHS solution did not perform as well as its 𝜖-optimal 

variants DHS-m and SoftMaxDHS (although its still greatly improved its performance 

with more planning time, as desired).  Looking closer at the results, we note that this is 

due to the LSEM heuristic actually having a problem caused by a quirk of this 

benchmark.  In particular, the agent’s Tag action not only has the ability to earn the agent 

a large reward (or incur a large cost), but it also identifies whether or not an opponent is 

in the same location.  That is, if the agent performs a Tag action, it will either know with 

certainty that it shares a location with the opponent (since it receives a large reward and 

execution ends), or that the opponent cannot be in the agent’s current location.  As such, 

this action always reduces the agent’s ESU (where the opponent’s location is the hidden 

part of the environment state).  Since no other actions reveal as much information about 

the environment state, belief states following Tag actions maximize ℎ𝐿𝑆𝐸𝑀, even though 
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they will earn the agent large costs if the opponent is not in the same location as the 

agent.    As a result, the agent will often want to perform Tag actions when using ℎ𝐿𝑆𝐸𝑀, 

and will subsequently accumulate large costs for wrong Tag actions.  Other heuristics 

such as ℎ𝐴𝐸𝑀𝑆2, on the other hand, will consider the possibility of these large costs and 

cause the agent to avoid performing Tag actions until it is likely to be in the same 

location as the opponent.  This quirk explains why LSEM alone performed so poorly on 

Tag, and why DHS also suffered compared to its variants (where DHS-m is biased to 

perform ℎ𝐴𝐸𝑀𝑆2 more often and SoftMaxDHS only stochastically chooses the heuristic 

considered ideal for the current expected stage of planning).  On the other hand, we also 

observe that DHS did not perform nearly as poorly as LSEM alone (especially as 

planning time increased), implying that it still adjusted which heuristics were used and 

when in order to guide planning. 

Finally, comparing against the state-of-the-art Monte Carlo search algorithms 

ABDESPOT and ARDESPOT, we observe that our DHS variants DHS-m and 

SoftMaxDHS outperformed the Monte Carlo search algorithms for the smallest planning 

times (𝜏 ≤ 50 ms) and were close in performance for the greater planning times (𝜏 ≥ 100 

ms).  Thus, our heuristic search solution again performed very favorably in comparison to 

the state-of-the-art Monte Carlo algorithms, and not just other heuristic search algorithms 

for online POMDP planning. 
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Table 4.3: Results on RockSample Benchmark with 95% Confidence Intervals 
RockSample 

|𝑆| = 12,545  |𝒳| = 50  |𝒴| = 256  |𝐴| = 13  |𝑍| = 2 

Algorithm 
𝜏 (ms) 

5 10 50 100 500 1000 

AEMS2 13.99 ± 0.33 14.24 ± 0.33 18.22 ± 0.39 19.02 ± 0.39 19.48 ± 0.37 20.31 ± 0.41 

FHHOP 7.36 ± 0.02 7.41 ± 0.04 18.08 ± 0.38 18.91 ± 0.41 19.32 ± 0.38 20.40 ± 0.40 

LSEM 7.35 ± 0.00 7.35 ± 0.00 7.35 ± 0.00 7.35 ± 0.00 7.35 ± 0.00 7.35 ± 0.00 

DHS 13.47 ± 0.34 13.84 ± 0.33 18.14 ± 0.39 18.18 ± 0.39 20.16 ± 0.38 20.03 ± 0.42 

DHS-m 12.98 ± 0.35 12.71 ± 0.35 18.08 ± 0.39 18.37 ± 0.41 19.19 ± 0.38 20.38 ± 0.40 

SoftMaxDHS 13.72 ± 0.33 13.24 ± 0.34 18.18 ± 0.40 18.30 ± 0.39 18.85 ± 0.38 19.99 ± 0.41 

ABDESPOT 18.71 ± 0.41 18.83 ± 0.41 19.61 ± 0.43 19.77 ± 0.41 19.79 ± 0.41 20.00 ± 0.41 

ARDESPOT 18.72 ± 0.39 18.61 ± 0.41 19.48 ± 0.41 19.32 ± 0.40 19.74 ± 0.41 19.32 ± 0.42 

4.6.3. RockSample Results 

Finally, we analyze the results of our experiments on the RockSample benchmark.  

Recall that unlike AUVNavigation and Tag, this benchmark is not highly uncertain, and 

thus does not require two stages for planning (as controlled by our solution).  We present 

the results on this benchmark in Table 4.3. 

From these results, we first observe that as expected, the state-of-the-art heuristic 

search algorithms performed quite well.  Both AEMS2 and FHHOP increased in 

performance with more planning time and achieved some of the highest cumulative 

rewards.  As in our other benchmarks, we again observe that FHHOP started off a little 

lower than AEMS2, but eventually caught up as planning time increased.  Thus, state-of-

the-art heuristic search algorithms indeed properly addressed planning in this non-highly 

uncertain environment. 

However, we also observe quite good performance from our DHS solution and its 

variants, in spite of the fact that planning did not require two stages since the 

environment was not highly uncertain.  That is, not only did performance increase as 

planning time increased (as desired), but each of our variants (DHS, DHS-m, and 

SoftMaxDHS) generally outperformed state-of-the-art FHHOP for the smallest planning 
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times (𝜏 ≤ 10 ms), and were competitive with both FHHOP and AEMS2 across all 

planning times.  This is noteworthy since LSEM alone generally performed the worst of 

all solutions (since treating ESU reduction separately was not necessary in RockSample).  

In other words, each of our DHS solution variants appropriately relied on the ℎ𝐴𝐸𝑀𝑆2 

heuristic throughout planning, treating nearly all of planning as if the agent were always 

in Stage 2 (since Stage 1 was not necessary).  This is exactly the type of behavior we 

want to observe in environments that are not highly uncertain, implying that our solution 

is not only beneficial in complex, highly uncertain environments such as 

AUVNavigation, but is also safe to use in other types of environments as well (without 

suffering significantly worse performance than state-of-the-art AEMS2). 

Finally, comparing our solution against the state-of-the-art Monte Carlo search 

algorithms, we observe that although our solution started with worse performance for the 

smallest planning time constraints (𝜏 ≤ 100 ms), it still achieved comparable 

performance as planning time increased.  Considering also the performance of AEMS2 

and FHHOP, we note that on problems such as RockSample, Monte Carlo search 

algorithms appear to be the most efficient and effective at planning, as previously 

reported (e.g., Silver & Veness, 2010; Somani et al., 2013). 

4.6.4. Discussion 

Considering our results across all three benchmark problems, we now draw the 

following conclusions.  First, our situationally-aware DHS algorithm indeed improves 

planning in complex, highly uncertain environments, as desired.  In the AUVNavigation 

benchmark, this algorithm appropriately adapted the agent’s planning based on the 

currently identified stage in order to select the most appropriate heuristic (novel ℎ𝐿𝑆𝐸𝑀 or 
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ℎ𝐴𝐸𝑀𝑆2) needed to resolve the most pressing type of uncertainty: ESU or CRU.  As a 

result, the agent achieved the greatest cumulative rewards when planning was the most 

constrained, and therefore also the most difficult, in comparison to the state-of-the-art 

heuristic search algorithms.  It was also competitive with, and sometimes exceeded, the 

state-of-the-art Monte Carlo search algorithms that were the best previously reported 

algorithms on this benchmark.  Therefore, our solution provides a heuristic search 

algorithm for online POMDP planning that bridges the performance gap between this 

type of planning algorithm vs. Monte Carlo search algorithms. 

Moreover, our algorithm also demonstrated its ability to properly identify the 

appropriate heuristic to use when the environment was not highly uncertain, as in the 

RockSample benchmark.  In RockSample, DHS and its variants appropriately relied on 

the ℎ𝐴𝐸𝑀𝑆2 heuristic, which had similarly great overall performance on this benchmark, 

and chose not to use the ℎ𝐿𝑆𝐸𝑀 very much, which was not needed nor successful in this 

environment that had easy to resolve ESU.  Therefore, we also conclude that the 

situational-awareness of our DHS algorithm also works in environments where planning 

does not need to be split into stages, and is therefore safe to use in more environments 

than those that are highly uncertain. 

Finally, the two 𝜖-optimal variants of our DHS algorithm—DHS-m and 

SoftMax—each also performed quite well in the highly uncertain but less complex Tag 

benchmark, achieving cumulative rewards better than state-of-the-art FHHOP and Monte 

Carlo search algorithms, as well as close to AEMS2 as the amount of time allotted for 

planning increased.  This result demonstrates that although situational-awareness and 

multiple stages of planning are less necessary in highly uncertain environments when the 
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problem isn’t very complex (i.e., has small state, action, and observation spaces), our 

solution again can achieve good performance by relying on the appropriate heuristic at 

the appropriate times.  However, we also discovered in our Tag experiments that our 

LSEM heuristic has a potential flaw: it does not consider the costs of actions in any way, 

and thus might try to force ESU reduction at very high costs contrary to the agent’s 

ultimate goals.  In the future, we intend to explore variants of LSEM to address this 

possible weakness.  However, as previously described, our DHS-m and SoftMaxDHS 

variants were able to overcome this weakness by choosing to use the ℎ𝐴𝐸𝑀𝑆2 heuristic to 

guide planning when appropriate. 

Of note, in each of our three benchmarks, we observe different results comparing 

AEMS2 with FHHOP in contrast to those previously reported by Zhang & Chen (2012).  

Namely, Zhang & Chen reported that FHHOP routinely outperformed AEMS2, including 

for the times reported in our experimental results.  We believe that this is due to a key 

difference between our experimental setup and theirs: we use a MOMDP representation 

with each algorithm, instead of only with FHHOP, whereas they considered this 

representation to be part of their FHHOP solution.  Instead, a MOMDP is compatible 

with each state-of-the-art heuristic search algorithm, so in fairness to each, we used the 

same representation for all algorithms. In turn, this sped up planning for AEMS2, causing 

our differences in results. 

4.7. Conclusions 

In conclusion, in this chapter we studied the problem of online POMDP planning 

in highly uncertain environments, demonstrating that difficult levels of environment state 

uncertainty can reduce the ability of state-of-the-art heuristic search algorithms (e.g., 



www.manaraa.com

 
 

171 

AEMS2 (Ross & Chaib-draa, 2007), FHHOP (Zhang & Chen, 2012)) to reduce 

cumulative reward uncertainty, leading to suboptimal planning under limited time 

constraints.  To overcome this problem, we proposed a solution based on splitting 

planning in such environments into two stages, each addressing a different type of 

uncertainty.  We contributed a novel situationally-aware heuristic selection mechanism 

designed to identify the agent’s current planning stage based on the most pressing type of 

uncertainty in need of reduction, then use an appropriate heuristic to guide planning 

based on the current stage.  We also contributed a novel heuristic called LSEM that 

guides the agent to reduce environment state uncertainty during the first stage of 

planning.  We analyzed the theoretical properties of our solution and developed two 

variants guaranteed to be 𝜖-optimal, which is an important property for anytime online 

POMDP planning algorithms.   

We conducted an experimental study comparing the performance of state-of-the-

art heuristic search and Monte Carlo search online POMDP planning algorithms against 

our solution and its variants in three different commonly used POMDP benchmark 

problems.  Using a range of time constraints on planning in each benchmark to 

understand the performance of planning in different settings, we observed several key 

results about our solution.  First, DHS and its variants successfully produced better plans 

in the most complex and highly uncertain environment when the agent was most time 

constrained (finding plans capable of achieving positive rewards over 200 times faster 

than AEMS2 and FHHOP).  Second, DHS and its variants earned some of the highest 

rewards even in an environment that was not highly uncertain, demonstrating both that (i) 

our solution appropriately selects heuristics to guide planning based on the agent’s 
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current need, and (ii) that our solution is safe to use in environments that are not highly 

uncertain.  Finally, the 𝜖-optimal variants of DHS also achieved good performance in the 

highly uncertain but least complex environment where multistage planning was not 

necessary. 

In the future, we intend to continue this research along several directions.  First, 

we intend to implement our solution in actual real-world deployments of intelligent 

agents and multiagent systems within highly uncertain environments to further evaluate 

its performance.  For example, POMDPs have been used to control information gathering 

in domains such as human-agent interactions (e.g., Boutilier, 2002; Doshi & Roy, 2008; 

Williams & Young, 2007)  and robotics (e.g., Mihaylova et al., 2002; Spaan et al., 2010), 

and we suspect our multistage planning could further improve planning in such 

applications.  Second, we intend to produce an improved version of LSEM that considers 

the costs of actions in order to avoid possible problems like we observed in Tag, where 

the agent could exchange (unnecessary) high costs for reduced environment state 

uncertainty.  Third, we want to further study variants of DHS to hopefully produce a 

solution that reaches optimal levels of rewards faster to further complement its ability to 

find good (albeit suboptimal) rewards quickly.  Finally, we want to consider additional 

types of heuristic functions within a heuristic selection mechanism like DHS to see if our 

general approach of situationally-aware multistage planning might be useful in other 

types of complex, challenging environments (and not just highly uncertain 

environments). 
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CHAPTER 5   INTELLIGENT INFORMATION SHARING WITH 

LOCALIZED, NON-STATIONARY PHENOMENA 
 

In this chapter, we present our research on the Information Sharing Problem (c.f., 

Section 1.3) in the context of large teams where only a small subset of the agents can 

directly observe local phenomena within the environment. Previous research has 

demonstrated the challenges of converging to consistent, accurate beliefs throughout the 

team when observing such localized phenomena.  However, sharing is further 

complicated in non-stationary environments, where changes in the observed phenomena 

over time require the team to collectively revise their beliefs as the phenomena change.   

In this chapter, we first analytically and empirically demonstrate the difficulty 

inherent in sharing information and revising beliefs over time about localized, non-

stationary phenomena, uncovering the inertia-based Institutional Memory Problem.  

Subsequently, we propose two novel solutions for addressing this problem: (1) a change 

detection and response algorithm, and (2) a forgetting-based solution.  In both solutions, 

agents reflect on their own knowledge or the knowledge shared by neighbors, the 

deliberatively decide how to incorporate such information to improve their knowledge 

updates and information gathering.  We test our solutions under several network 

structures and sequences of non-stationary phenomena to verify the efficacy of our 

approaches and evaluate their robustness in the presence of faulty and/or malicious agents 

injecting incorrect information into the team. 

Please note that this chapter represents an extended version of a workshop paper 

presented at the 6th International Workshop on Emergent Agent Intelligence (WEIN 

2014) alongside the AAMAS 2014 conference (Eck & Soh, 2014a) in May 2014. 



www.manaraa.com

 
 

174 

5.1. Introduction 

Real-world environments contain complex phenomena that are increasingly 

observed by computational devices and systems, often to enhance human knowledge 

and/or provide real-time support for some task.  For example, sensors networks and robot 

teams are employed for area surveillance (e.g., Padhy et al., 2006; Pavon et al., 2007; 

Spaan, Veiga, & Lima, 2010), autonomous robots are used to discover victims of 

disasters in search and rescue applications (e.g., Calisi et al., 2007), and human 

relationships and preferences are tracked in social networking systems (e.g., Yin et al., 

2011).   

In many of these environments, the observed phenomena are very localized, such 

as detected events (e.g., fires) in a specific area, victims trapped in particular buildings, or 

individual user's preferences.  Although there might be many sensing units within the 

system, only a few sensing units are capable of directly observing such local phenomena, 

limiting the ability of the system to gather information en mass.  Furthermore, the 

phenomena are also often non-stationary and change dynamically over time.  Thus, 

information gathering by sensing units becomes outdated and must be revised frequently 

to adapt with the changing phenomena. 

To address these challenging phenomena properties, improve the quality of 

gathered information, and accurately maintain up-to-date beliefs about the observed 

phenomena, intelligent software and hardware agents can be employed to control sensing 

units.  Such intelligent agents are capable of exhibiting social behavior by sharing 

information with one another, helping overcome the localization problem in real-world 

applications.  Agents can also provide both goal-directed behavior to accomplish system 
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goals, as well as reactive behavior to adapt system performance in unexpected situations 

(Wooldridge, 1999).  In this manner, intelligent agents can reason about the sensing 

performed by the system in order to optimize or improve the information gathered (e.g., 

Padhy et al., 2006; Spaan, Veiga, & Lima, 2010). Altogether, agents can improve the 

robustness, scalability, effectiveness, and efficiency of observational systems. 

Prior research has studied both (1) information sharing between cooperative 

agents (e.g., Glinton, Scerri, & Sycara, 2009; 2010; 2011; Pryymak, Rogers, & Jennings, 

2012), and (2) detecting and adapting to changes in non-stationary information gathered 

by individual agents (e.g., Widmer & Kubat, 1996).  However, little work has considered 

these two components of agent-based sensing in combination.  Both are vital to sensing 

localized, non-stationary phenomena in real-world environments, but at the same time, 

localization and non-stationarity together make both information sharing and change 

detection more challenging.  Therefore, it is important to study both components of 

sensing together to understand their relationship to the two aforementioned phenomena 

properties. 

In this chapter, we begin to fill this gap in the literature by considering the impact 

of both localization and non-stationarity in observed phenomena on information sharing 

and change detection within teams of sensing agents.  In particular, we start with a known 

model for information sharing: large team information sharing (LTIS) (e.g., Glinton, 

Scerri, & Sycara, 2009; 2010; 2011; Pryymak, Rogers, & Jennings, 2012), a formalized 

model where many agents work together but only a small subset of the agents can 

directly observe any particular phenomena.  This model was chosen as a starting point 

due its ability to handle the localization property and its growing popularity in the agent 
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literature.  To this model, we then add non-stationarity and study the effects of these 

challenging properties together to develop new solutions for handling both properties 

simultaneously.   

We contribute (1) a formalization of non-stationary phenomena within the LTIS 

model, alongside localization; (2) an analysis of the difficulty of non-stationarity during 

belief updates using information shared by the few local agents capable of observing the 

phenomena; (3) two distinct solutions for overcoming the challenges of non-stationarity 

and localization: (i) cooperative change detection and response in local neighborhoods, 

and (ii) individually forgetting outdated information; (4) empirical studies investigating 

the impact of localized, non-stationary phenomena on large teams of agents controlling 

sensing units, as well as the effect of using our solutions for adapting to such phenomena; 

and (5) a discussion of the strengths and weaknesses of our solutions and their 

appropriateness in different environments. 

5.2. LTIS 

5.2.1. LTIS Model 

We first present the formalized LTIS model (Glinton, Scerri, & Sycara, 2009; 

2010; 2011; Pryymak, Rogers, & Jennings, 2012) that serves as the foundation for our 

solutions.  In LTIS, a large set of agents 𝐴 (e.g., 𝐴 ≥ 1000) work together as a team to 

collect information about some environment phenomena.  However, only a small subset 

𝑆 ⊂ 𝐴 (with |𝑆| ≪ |𝐴|) of the agents have sensors that can directly observe a 

phenomenon.  For simplicity, agents represent a phenomenon as a binary fact 𝐹 ∈

{𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}, although the model can be easily extended to a greater number of values 

(Pryymak, Rogers, & Jennings, 2012). Each sensor returns binary observations 𝑜𝑏 
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describing the current value of the phenomenon.  The sensors are imperfect and only 

return correct 𝑜𝑏 with accuracy probability 𝑟.  For agents with sensors, these observations 

are used to revise the agent's belief about the correct value of 𝐹.  However, since the team 

has limited sensors that can observe the particular phenomenon, the agents must share 

information to revise the other agents' beliefs. Because the team is so large, agents can 

only communicate with nearby neighbors.  Each neighborhood is relatively very small 

(compared to the total number of agents), with average size 𝑑. 

  A common set of solution techniques have been adopted for LTIS (Glinton, 

Scerri, & Sycara, 2009; 2010; 2011; Pryymak, Rogers, & Jennings, 2012).  First, agents 

only communicate summarized information representing their current belief about 𝐹, 

instead of forwarding each individual observation from the sensors.  These summarized 

beliefs are called opinions (denoted by 𝑜𝑝, described below).  This practice (1) reduces 

the amount of potentially costly communication, (2) minimizes the impact of over-

counting information, since each agent could repeatedly receive the same forwarded 

observation from multiple neighbors, and (3) hides raw observations which could be 

sensitive or include private information (e.g., enemies in the surveilled area, user 

purchasing habits) (Glinton, Scerri, & Sycara, 2010). 

  Given uncertain facts, beliefs are represented by a probability distribution 

describing the likelihood that 𝐹 is either 𝑇𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒.  Agents start with an initial 

uncertain belief that any value is equally likely, then Bayesian updating incorporates new 

information 𝑜 (an observation 𝑜𝑏 from a sensor, or an opinion 𝑜𝑝 from a neighbor): 

                                                𝑏′ =
𝑐𝑝(𝑜)∙𝑏

𝑐𝑝(𝑜)∙𝑏+(1−𝑐𝑝(𝑜))∙(1−𝑏)
     (5.1) 
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where 𝑏 is the probability that 𝐹 is 𝑇𝑟𝑢𝑒 (so (1 − 𝑏) is the probability it is 𝐹𝑎𝑙𝑠𝑒), 𝑏′ is 

the updated belief, and 𝑐𝑝(𝑜) is the conditional probability that 𝐹 is 𝑇𝑟𝑢𝑒 given the new 

information.  Here, 𝑐𝑝 weighs newly received information 𝑜, and its value depends on the 

value and source of 𝑜: 

                      𝑐𝑝(𝑜) = {

𝑟              if 𝑜 = 𝑇𝑟𝑢𝑒 ∧ 𝑜 an observation 𝑜𝑏
1 − 𝑟       if 𝑜 = 𝐹𝑎𝑙𝑠𝑒 ∧ 𝑜 an observation 𝑜𝑏
𝑚𝑖                    if 𝑜 = 𝑇𝑟𝑢𝑒 ∧ 𝑜 an opinion 𝑜𝑝
1 − 𝑚𝑖            if 𝑜 = 𝐹𝑎𝑙𝑠𝑒 ∧ 𝑜 an opinion 𝑜𝑝

   (5.2) 

For observations 𝑜𝑏, the weight depends on sensor accuracy 𝑟, whereas for 

opinions 𝑜𝑝, the weight depends on 𝑚𝑗, the likelihood that 𝑎𝑗 's neighbors share correct 

opinions.  

Because beliefs are uncertain, agents only share information when they become 

confident that 𝐹 is either 𝑇𝑟𝑢𝑒 or not from received information.   In particular, a 

confidence threshold 𝜎 > 0.5 discretizes beliefs into confident opinions: 

                                                𝑜𝑝 = {
  𝑇𝑟𝑢𝑒                if 𝑏 > 𝜎
  𝐹𝑎𝑙𝑠𝑒      if 𝑏 < 1 − 𝜎
  𝑈𝑛𝑐                        else

          (5.3) 

where 𝑈𝑛𝑐 denotes an unconfident opinion that is never communicated but noted by the 

agent when evaluating its belief.  We illustrate this discretization in Figure 5.1 in Section 

5.3. 

5.2.2. Prior LTIS Research 

Prior LTIS research has primarily focused on two aspects: (1) identifying 

important emergent behaviors during information sharing within large teams, and (2) 

developing distributed algorithms to achieve desired emergent behavior. 

Using branching process theory, Glinton, Scerri, & Sycara (2010) developed an 

analytical model predicting that different settings of the 𝑐𝑝 information weighting 
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parameter (specifically 𝑚𝑗 for weighting opinions from neighbors) can result in three 

phases of emergent behavior: (1) unstable dynamics, where too much weight causes 

frequent avalanches of sharing between agents, resulting in oscillating beliefs, (2) stable 

dynamics, where too little weight results in infrequent belief updates and few confident 

beliefs, and (3) scale invariant dynamics, where the optimal amount of weight permits 

enough sharing to propagate beliefs throughout the team without causing oscillation.  

Later, they (2011) discovered that LTIS was vulnerable when incorrect information was 

received (either from benign error or malicious injection by an attacker) and an agent's 

belief was near the confidence threshold 𝜎. 

Prior research has also focused on developing distributed algorithms for 

controlling information sharing by adapting the weight (i.e., 𝑚𝑗) placed in shared 

opinions in order to achieve desirable properties. Glinton, Scerri, & Sycara (2010) 

exploited their model to produce an algorithm (DACOR) that controls avalanches within 

an agent's local neighborhood to globally achieve scale invariant dynamics.  Later, 

Pryymak, Rogers, & Jennings (2012) developed an algorithm (AAT) requiring no 

additional communication to improve belief convergence. 

In this chapter, we contribute to both avenues of research on LTIS.  First, we 

study the emergent behavior caused by including non-stationarity in the LTIS model, 

through which we describe analytically the impact of this property on agent information 

sharing.  Second, we develop novel distributed solutions for adapting information sharing 

and belief updates to handle non-stationarity. We also evaluate these solutions 

empirically using different settings of teams likely to occur in real-world applications 

(e.g., different network structures connecting agents, and the presence of malicious or 
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faulty agents as previously studied (Glinton, Scerri, & Sycara, 2011)) to demonstrate the 

advantages and disadvantages of each approach. 

5.3. Non-Stationary Phenomena 

As described previously, the LTIS model is useful for addressing the challenging 

localization property in observed environmental phenomena because it explicitly 

considers the reality that only a small subset of the agents can make direct observations.  

In this section, we extend the LTIS model to also include a second important property of 

many observed phenomena: non-stationarity. 

Recall that non-stationarity is caused by dynamic environments that result in 

changes to the phenomena of interest as agents perform observations (e.g., events 

occurring in areas of interest, additional buildings collapsing after a disaster trapping new 

victims, changing human user preferences).  To handle non-stationarity, agents must not 

only be capable of determining the initial value of a phenomenon (equivalent to forming 

beliefs about stationary phenomena in static environments as previously studied with 

LTIS), but agents must also be capable of properly adapting their beliefs over time as a 

phenomenon changes values. 

5.3.1. Modeling Non-Stationarity in LTIS 

To model non-stationary phenomena in LTIS, we extend the existing model by 

adding a time component to the relevant factors in order to reflect changes to the 

phenomena over time. This approach produces the following changes. 

First, we discretize time into different intervals, represented by 𝑡 ∈ ℤ+.  One time 

interval represents the amount of time required for a sensor to produce an observation and 

for an agent to transmit an opinion to one of its neighbors.  Second, we redefine a fact 
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from a constant 𝐹 to a time-dependent sequence 𝐹(𝑡) expressing the phenomenon's 

changing value at each elapsed time interval. For example, a fact might be (1) periodic 

and switch values every 𝛥𝑡 ticks, (2) random and switch values with differing durations, 

or (3) simply switch values once.  Third, observations 𝑜𝑏 and opinions 𝑜𝑝 are time-

stamped with the time 𝑡 when they were observed or shared.  Finally, to reflect changing 

fact values over time in the agents' beliefs, probabilistic beliefs are also extended to time-

dependent sequences 𝑏(𝑡).  Of note: since an agent can receive one or more opinions 

from its neighbors and also an observation from a sensor in the same time interval 𝑡, a 

chain of several belief updates 𝑏′ can occur for 𝑏(𝑡) $.  Thus, the agent might need to 

incorporate multiple updates from different sources in the same time interval. 

5.3.2. Analyzing the Effect of Non-Stationarity 

Forming consistent, accurate beliefs about non-stationary phenomena is a much 

more challenging problem than observing stationary phenomena because of the amount 

of information required to correctly revise agents' beliefs after a phenomenon change.  To 

illustrate (without loss of generality), consider a simple phenomenon 𝐹1(𝑡) that is initially 

𝑇𝑟𝑢𝑒, then changes to 𝐹𝑎𝑙𝑠𝑒 at 𝑡 = 1001.  Observing this phenomenon results in updates 

to an agent's beliefs over time illustrated in Figure 5.1 as (a) a continuous probability 0 ≤

𝑏 ≤ 1, and (b) a discrete opinion 𝑜𝑝 ∈ {𝐹𝑎𝑙𝑠𝑒, 𝑈𝑛𝑐, 𝑇𝑟𝑢𝑒} (Eq. 5.3).   

Here, the agent begins with pure uncertainty 𝑏(0) = 0.5 and must update its 

belief to 𝑏(𝑡) ≥ 𝜎 (recall 𝜎 > 0.5) to achieve a correct opinion of 𝑇𝑟𝑢𝑒.  This requires a 

belief change of only 𝛥𝑏1 = 𝜎 − 0.5, denoted by (*) in Figure 5.1. 

After the non-stationary phenomenon changes values, the agent must receive a 

sequence of new information to revise its beliefs from 𝑏(𝑡) ≥ 𝜎 − 0.5 to a later  
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Figure 5.1: Agent Belief Updates 

Note: (*) distance to reach initial True belief, (**) distance to reach later False belief 

𝑏(𝑡′) ≤ 1 − 𝜎 < 0.5.  This requires a belief change of 𝛥𝑏2 ≥ 2(𝜎 − 0.5), denoted by 

(**).  Since 2𝛥𝑏1 = 2(𝜎 − 0.5) ≤ 𝛥𝑏2, we find that properly revising beliefs for non-

stationary phenomena requires at least twice as much belief change as observing 

stationary phenomena, and subsequently, twice as much observed and shared 

information.  This requirement holds for any change in a phenomenon value, not just in 

the example used here. 

Unfortunately, choosing a weight placed in shared information cannot overcome 

this problem, as used previously to control the flow of information through the team to 

achieve consistent, accurate beliefs (Glinton, Scerri, & Sycara, 2010; Pryymak, Rogers, 

& Jennings, 2012). Instead, the above problem arises regardless of the weight selected.  

That is, given the belief update rule (Eq. 5.1) and any chosen value for 𝑐𝑝(𝑜), two 

updates with opposing information simply cancel each other out.  This is the underlying 

reason why an agent needs twice as much information to revise its belief (than it takes to 

arrive at an initial confident belief), as described in the previous paragraph.  This result 

implies that controlling information sharing by selecting a weight for new information 

(namely 𝑚𝑗 for shared opinions 𝑜𝑝) as studied previously for LTIS does not address the 

challenges posed by non-stationarity.  Instead, a different type of solution for guiding 

agent information sharing and belief updates is necessary.  We propose two such 
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solutions in Sections 5.4 and 5.5 that exploit different ways of closing the gap between 

(*) and (**) (from Figure 5.1) in order to speed up belief convergence after a change in 

the non-stationary phenomenon. 

Furthermore, we note that the distances (*) and (**) (in Figure 5.1) also result in 

agents being less likely to share opinions from each belief update after the phenomenon 

has changed values than they would with stationary phenomenon. Here, the team suffers 

from an inertia problem, which we call the:  

Institutional Memory Problem: too much information needs to be 

received by an agent to cause the agent to also share new opinions, 

resulting in the team becoming stuck with outdated beliefs that do not 

change even when new information is observed. 

Specifically, recall that agents only share information with neighbors when they 

cross a confidence threshold 𝑏′ ≥ 𝜎 or 𝑏′ ≤ 1 − 𝜎.  Since more updates are required to 

reach a threshold after a phenomenon value change, each individual belief update is less 

likely to result in sharing a new opinion.  Therefore, agents actually share fewer opinions 

with one another.  Unfortunately, this is opposite of what the agents need in order to 

adapt to the non-stationary phenomenon since they actually need more updates to reach a 

new accurate belief, causing agents to fail to adapt and either become stuck with (1) 

outdated beliefs or (2) uncertainty.   

The Institutional Memory Problem should not to be confused with the stable 

dynamics emergent behavior discovered by Glinton, Scerri, & Sycara (2010).  In their 

work studying stationary environments, insufficient information is exchanged due to too 

little weight placed on new information, resulting in uncertain beliefs.  In our work, an 

inability to overcome previous confident beliefs limits information exchange.  To 

demonstrate that our problem is not caused by the weight chosen for incorporating new 
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Figure 5.2: Impact of Non-Stationarity 

information, Figure 5.2 presents the results of an empirical study using a team of agents 

observing the aforementioned simple phenomenon 𝐹1(𝑡) (using the Random Network 

parameters given in Section 5.6).   

Here, we measure agent performance as the average number of agents (out of 

|𝐴| = 1000) achieving accurate beliefs over time while the non-stationary phenomenon 

changed values.  We varied the weight for new information from neighbors and confirm 

that than no ideal weight exists for non-stationary phenomena, as opposed to the 

existence of an ideal weight for stationary phenomena (Glinton, Scerri, & Sycara, 2010). 

Instead, although the team could converge to consistent, accurate beliefs for the initial 

value of the non-stationary phenomenon (identical to stationary phenomena), a much 

smaller number of agents correctly revised their beliefs over time.  Indeed, the majority 

of agents was unable to overcome inertia and simply retained the initial phenomenon 

value in their beliefs.  As expected, this occurred regardless of the weight for shared 

information.  Since appropriately choosing a weight for new information is thus not a 

viable solution for handling non-stationarity (as previously studied for stationarity), we 

instead require a new type of solution. 
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Overall, we make the following observations about the relationship between the 

two properties.  First, localization magnifies the impacts of non-stationarity by limiting 

the flow of information into the team by restricting observations about changing 

phenomenon values necessary to update beliefs over time.  Second, non-stationarity 

magnifies the impacts of localization by limiting the flow of information within the team 

by restricting shared opinions also necessary to update beliefs over time.  Therefore, 

these two challenging properties unfortunately work together adversely. 

5.4. Change Detection and Response 

Similar to prior algorithms for LTIS, our first solution relies on cooperative 

agents making simple yet effective local decisions within neighborhoods to achieve 

desired emergent behavior (i.e., properly adapting agent beliefs over time to non-

stationary phenomena).  Here, we develop an approach for explicitly detecting and 

responding to non-stationarity.  

Strategy.  Our strategy is to convert the problem of handling non-stationarity to 

one closer to forming beliefs about (simpler) stationary phenomena. We start with the 

insight that if the team were able to detect when a phenomenon changes values, then the 

agents could treat a new value independent of the previous value – that is, as a separate 

stationary phenomenon and a separate instance of the original stationary LTIS problem.  

In which case, each agent would need less information to revise its beliefs after a 

phenomenon change, having instead only to change beliefs from pure uncertainty to a 

new confident belief (𝛥𝑏1), as opposed to moving from one confident belief to its 

opposite (𝛥𝑏2 ≥ 𝛥𝑏1).  In turn, this behavior would mitigate the Institutional Memory 
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Problem by reducing inertia and subsequently increase the team's convergence to 

consistent, accurate beliefs.  

To detect changes to a non-stationary phenomenon, we actually exploit the cause 

of the inertia property of the Institutional Memory Problem identified in the previous 

section.  Specifically, considering how much information is needed to revise an agent's 

belief (i.e., 𝛥𝑏2 ≥ 2𝛥𝑏1, illustrated by (**) in Figure 5.1) causing the inertia, we note that 

any particular neighbor is very unlikely to share a new opinion that conflicts with the 

most recent opinion that it previously shared without an actual change in the 

phenomenon.  For instance, in our prior example (Figure 5.1), sharing a new 𝐹𝑎𝑙𝑠𝑒 

opinion (after previously sharing 𝑇𝑟𝑢𝑒) indicates to an agent's neighbors that it received 

much new information reflecting a phenomenon change.  In which case, the new opinion 

is highly likely to be accurate since the likelihood of receiving such a large chain of 

information that is instead incorrect would be small.  Therefore, changed opinions by 

neighbors provide more information than just new opinions, but also indicators signaling 

that the phenomenon indeed likely changed values, which other agents can exploit to 

overcome their inertia. 

After detecting a phenomenon change by receiving a newly conflicting opinion 

from a neighbor, an agent responds as follows (detailed in Algorithm 5.1).  First, the 

agent receiving a newly conflicting opinion resets its own belief to pure uncertainty 

(𝑏(𝑡) = 0.5), starting a new, fresh belief about the phenomenon under observation.  

Thus, this agent is now closer to a new correct opinion than any formerly confident belief 

about the previous value of the phenomenon, without having had to receive as much  
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Algorithm 5.1: Change Detection and Response (CD & R) Algorithm 

information as its neighbor.  Next, the receiving agent broadcasts its detection (i.e., 

sendDetectedChangeAlert()) to its other neighbors that are farther away from sensors and 

thus less likely to have already detected a change as information propagates, encouraging 

them to also reset their beliefs.  Afterwards, it updates its belief using the information in 

the shared opinion (Eq. 5.1). 

This reaction behavior simultaneously (1) puts agents in a position to quickly 

revise their beliefs after a detected change by moving away from previously confident 

beliefs before a belief update, and (2) spreads the detection of phenomenon changes 

locally within the team to speed up convergence to accurately revised beliefs without 

requiring all agents to receive a large chain of information to revise their beliefs. 

Addressing Concerns.  However, we must be careful to avoid incorrectly 

detecting phenomenon changes, or else the agents' beliefs could oscillate (similar to 

unstable team dynamics (Glinton, Scerri, & Sycara, 2010)). That is, if a neighbor shares 

an incorrect new opinion conflicting with past opinions, then a false change would be 

detected and agents would unnecessarily reset their beliefs and move away from correctly 

confident beliefs.   

Our solution mitigates this concern in three targeted ways.  First, agents only reset 

their beliefs with likelihood 𝜎, reflecting the same uncertainty the sharing neighbor has in 
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its opinion (Eq. 5.3).  Second, our solution only locally reacts within two
22

 network hops 

from the agent that initially changed opinions, minimizing the impact of false detection 

on the entire team.  Recall that the team's average connectivity 𝑑 is assumed to be rather 

small (relative to the size of the team), so these are very local behaviors.  Finally, even if 

an agent incorrectly resets its beliefs, it only changes its opinion to 𝑈𝑛𝑐 and does not 

fully adopt the neighbor's incorrect information.  Thus, the agent's belief is just as close to 

the correct belief as it is to the neighbor's shared incorrect belief, and the agent can re-

converge to the correct belief with new information just as easily as it would converge to 

the incorrect belief that triggered the reset in the first place. 

5.5. Forgetting Outdated Beliefs 

Our second solution also relies on agents to exhibit local behaviors to adapt their 

beliefs over time to non-stationary phenomena.  However, unlike our first solution, it is 

even more localized since each agent adapts independently of its neighbors, lessening the 

reliance of agents on one another.  Specifically, we develop a solution employing belief 

decay to enable agents to forget outdated beliefs and independently and quickly adapt to 

changes to non-stationary phenomena. 

The goals behind this solution design are that it should (1) produce faster 

adaptation to non-stationary phenomena since agents do not need to wait for conflicting 

opinions from neighbors to begin adaptation, and (2) be more robust in environments 

with potentially faulty or malicious agents (Glinton, Scerri, & Sycara, 2011) since it 

doesn't rely on neighbors for change detection.  

                                                           
22

 Detection is only propagated to the neighbors of the detecting agent, which is itself a neighbor of the 

changed agent 
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Strategy.  This solution is based on the natural assumption that if an agent has not 

received information for a while, its beliefs are less likely to reflect the current value of 

non-stationary phenomena since each phenomenon's value changes over time.  Thus, the 

agent's beliefs should become less confident the longer time has elapsed since the agent 

last received new information and updated its beliefs.  Then, the agent would be more 

likely to (1) reach a confidence threshold opposing its most recent opinion after a belief 

update in order to form a new correct belief, and (2) propagate new opinions throughout 

the team, enabling other agents to also correctly revise their beliefs and avoid inertia and 

the Institutional Memory Problem. 

To appropriately adapt agent uncertainty over time, we propose a solution based 

on belief decay, where each agent forgets older beliefs the longer time passes between 

belief updates.  Belief decay has been previously used to describe the behavior of human 

knowledge and memory in the cognitive science literature (e.g., Murdock, 1993), as well 

as for related problems in artificial intelligence, such as situational awareness (e.g., 

Hoogendoorn, van Lambalgen, & Treur, 2011) and information foraging with fewer 

agents that each directly observe the environment (e.g., Reitter & Lebiere, 2012).  

However, while this approach has been used in other domains, this research is the first 

application of belief decay to information gathering problems with localized phenomena 

such as LTIS, so its benefits are unclear a priori.  We expect that such an approach is 

especially strategic for LTIS because each agent (1) adjusts its beliefs independent of its 

neighbors, reducing the agent's reliance on its neighbors to adapt to changes, and (2) can 

control the rate of decay, useful for adapting to various frequencies of change in non-

stationary phenomenon. 
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For this solution, we propose adding the following rule to each belief update when 

an agent receives new information before incorporating the new information using Eq. 

5.1: 

                                                  𝑏′(𝑡) = 0.5 + (𝑏(𝑡) − 0.5)𝜆𝛿    (5.4) 

where 𝛿 represents the amount of time elapsed since the agent's last belief update, and 

𝜆 ∈ (0,1) is a parameter controlling how quickly the agent's belief decays over time: 

smaller 𝜆 causes faster decay, whereas larger 𝜆 causes slower changing beliefs.  Thus, by 

choosing an appropriate 𝜆, an agent can adjust how quickly it forgets old information and 

reacts to phenomenon changes (unlike our first solution). 

Using Eq. 5.4, an agent's belief always decays towards pure uncertainty (𝑏 = 0.5), 

and the amount of decay is proportional to the amount of time since its last belief update.  

Thus, the agent moves towards the best position to form a new belief after a phenomenon 

value change, and it requires less evidence of change (avoiding inertia) the longer it has 

been since an update when it is more likely that the phenomenon indeed changed values.  

Afterwards, performing updates with Eq. 5.1 incorporates new information into the time-

adjusted belief, allowing the agent to potentially cross a confidence threshold so that it 

can share a new opinion.   

Another way of looking at Eq. 5.4 is time-dependent information weighting.  That 

is, Eq. 5.4 weights older information (already incorporated in the agent's belief) down 

towards uncertainty before incorporating new information (Eq. 5.1), and the amount to 

down-weight is proportional to the amount of time since the older information was 

received. 
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Addressing Concerns.  However, we want to ensure that belief decay does not 

cause agents to become uncertain if the phenomenon has not actually changed for a 

while, which would lead the team to fail to maintain accurate beliefs. 

To mitigate this concern and avoid unnecessary mass uncertainty, we propose 

only decaying beliefs when new information is received instead of every tick. Recall that 

most agents infrequently receive information: only when new information is available, 

meaning only when there is actual evidence that the phenomenon might have changed.  

Delaying belief decay until receipt of new information allows the agent to (cautiously) 

retain its prior beliefs when it has no evidence causing it to believe the phenomenon has 

changed.  Decaying every tick (even with a smaller decay rate) would instead constantly 

push agents towards uncertainty, even if the phenomenon has not changed values, as 

illustrated in Figure 5.3.  Thus, agents would spend more time with uncertain beliefs, 

making it difficult for agents to maintain confident beliefs, similar to the stable dynamics 

problem observed by Glinton, Scerri, & Sycara (2010) where too little weight in new 

information causes the team to remain uncertain over time. 

 
Figure 5.3: Example of Performing Belief Decay (a) Only Upon Receipt of 

Information vs. (b) Every Tick 

Note:  Shaded area above 𝝈 line indicates accumulated time with a confident belief, 

which is much greater for (a) than (b) 
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5.6. Experimental Setup 

To better understand how our solutions address the challenges posed by localized, 

non-stationary phenomena in multiagent systems, we conducted an empirical study to 

evaluate the performance of our solutions in different scenarios modeling those found in 

different real-world applications of multiagent sensing.  Our goals were to (1) determine 

whether our algorithms improve the ability of the team to converge to consistent, accurate 

beliefs about localized, non-stationary phenomena, and (2) evaluate the robustness of our 

algorithms in the presence of malicious and/or faulty agents that share incorrect 

information.  Within each goal, we also consider how the network structure of the team 

(dependent on the application and domain) impacts performance.  

First, we consider two different types of phenomenon value sequences, 

representing different types of phenomena: (1) a periodic sequence that is initially 𝑇𝑟𝑢𝑒, 

then alternates for 10 total values of equal length (𝛥𝑡 = 1000), and (2) random 

sequences that alternate values 10 times with random lengths (chosen uniformly).  The 

first type of sequence represents equally challenging phenomena values to observe (since 

each are the same duration), whereas the second type represents less regular phenomena 

of greater difficulty more likely to be present in real-world applications.   In either case, 

each sequence has a total length of 10,000 simulation ticks. 

Second, we also consider the presence of faulty and/or malicious agents that share 

incorrect opinions every time they cross the 𝜎 or 1 − 𝜎 threshold and reach a new 

confident opinion.  We vary the number of faulty and/or malicious agents in order to 

evaluate the robustness of our solutions (which has been demonstrated to be a concern 

even for stationary phenomena (Glinton, Scerri, & Sycara, 2011)).  We also intentionally 
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choose the agents with the highest connectivity to be faulty and/or malicious, which 

represents a worst case scenario since these agents have most influence over their peers. 

Finally, we vary the network structure of the team of agents according to different 

types of networks present in real-world applications of multiagent sensing, including: (1) 

Random networks (RN), where connections between agents are randomly determined, 

such as in ad hoc sensor networks, (2) Small world networks (SWN), where agents are 

clustered in large, important subgroups, such as surveillance applications, and (3) Scale-

free networks (SFN), where connectivity follows a power-law distribution (i.e., a few 

agents are connected to many neighbors, whereas many agents have small connectivity), 

such as social networks or the Internet. 

To create these networks, we use the Erdos-Renyi (Erdos & Renyi, 1960), Watts-

Strogatz (rewire $p=0.5$) (Watts & Strogatz, 1998), and Barabasi-Albert preferential 

attachment (Barabasi & Albert, 1999) models, respectively.  For each network, we use 

the standard setting from  prior studies (e.g., Glinton, Scerri, & Sycara, 2010; Pryymak, 

Rogers, & Jennings, 2012):  the number of agents |𝐴| = 1000, the number of sensors 

|𝑆| = 0.05|𝐴| = 50, sensor accuracy 𝑟 = 0.55, average neighborhood size 𝑑 = 8, and 

confidence threshold 𝜎 = 0.8.  Unless specified, we default to the optimal weight for 

shared opinions given the other parameters: 𝑚𝑗 = 0.63 ∀𝑎𝑗 ∈ 𝐴 (Glinton, Scerri, & 

Sycara, 2010). 

To evaluate our solutions, we use two measures of agent performance.  First, we 

consider the average number of phenomena values about which the team collectively 

forms correct beliefs, represented by 𝑁800.  That is, following tradition (e.g., Glinton, 

Scerri, & Sycara, 2010), we consider a team's belief correct if 80% of the agents 
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(0.8|𝐴| = 800) form a correct, confident belief at the same time before the phenomenon 

changes values again.  This measures how well the team as a whole accomplishes its 

goal.  Second, we also consider the average number of agents holding each of the three 

types of discrete beliefs: correct (𝐶) and incorrect (𝐼) confident beliefs and unconfident 

beliefs (𝑈).  This measure further illuminates how the individual beliefs held by agents 

change over time as they adapt to changing phenomenon values.  

With these measures, we compare our two solutions–(1) change detection and 

response, and (2) forgetting outdated beliefs–for handling localized, non-stationary 

phenomena.  As a baseline, we also compare against agents that know a priori the ideal 

weight for new information, finding which is the goal of prior algorithms for stationary 

phenomena (e.g., DACOR (Glinton, Scerri, & Sycara, 2010) and AAT (Pryymak, 

Rogers, & Jennings, 2012)).  Thus, our baseline results represent an upper-bound on prior 

algorithm performance. 

5.7. Results 

Performance. We first evaluate the general performance of our two solutions for sharing 

information about localized, non-stationary phenomena within multiagent systems.  We 

present the results of this analysis in Table 5.1, which reports the measures of team 

performance (𝑁800, 𝐶, 𝐼, 𝑈) for each of the three network types and two types of 

sequences of non-stationary phenomena.  Please note that these results represent the best 

performance of each algorithm type:  using the ideal 𝜆 value for our forgetting-based 

solution (found by varying 𝜆 ∈ [0.9,1.0) in 0.01 increments) and the ideal 𝑚𝑗 value for 

the baseline and change detection and response solutions (found by varying 𝑚𝑗 ∈ 
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Table 5.1: Comparison of Solutions with Different Phenomenon and Networks  

with 95% Confidence Intervals 

            Algorithm 

Periodic Sequence Random Sequence 

RN SWN SFN RN SWN SFN 

𝑵𝟖𝟎𝟎 

Baseline 
5.00 ± 

0.00 

5.00 ± 

0.00 

5.00 ± 

0.00 

4.97 ± 

0.06 
5 ± 0.00 

4.99 ± 

0.02 

Change 

Detection 

10.00 ± 

0.00 

10.00 ± 

0.00 

10.00 ± 

0.00 

7.62 ± 

0.28 

7.60 ± 

0.27 

7.40 ± 

0.29 

Forgetting 
10.00 ± 

0.00 

10.00 ± 

0.00 

10.00 ± 

0.00 

9.38 ± 

0.13 

9.24 ± 

0.15 

9.44 ± 

0.13 

C 

Baseline 
479.39 ± 

0.91 

485.62 ± 

0.91 

492.37 ± 

0.92 

498.86 ± 

0.91 

495.67 ± 

0.91 

496.54 ± 

0.91 

Change 

Detection 

537.23 ± 

0.88 

546.07 ± 

0.91 

540.20 ± 

0.84 

564.16 ± 

0.87 

576.86 ± 

0.90 

558.25 ± 

0.84 

Forgetting 
731.76 ± 

0.62 

755.59 ± 

0.66 

642.86 ± 

0.56 

737.91 ± 

0.61 

767.63 ± 

0.64 

652.62 ± 

0.54 

𝑰 

Baseline 
481.03 ± 

0.91 

487.11 ± 

0.91 

492.64 ± 

0.92 

479.61 ± 

0.91 

476.31 ± 

0.91 

486.01 ± 

0.91 

Change 

Detection 

337.67 ± 

0.85 

356.23 ± 

0.88 

314.44 ± 

0.82 

324.47 ± 

0.85 

339.74 ± 

0.88 

309.61 ± 

0.83 

Forgetting 
89.65 ± 

0.47 

94.66 ± 

0.49 

97.80 ± 

0.50 

85.60 ± 

0.47 

85.20 ± 

0.47 

87.38 ± 

0.48 

𝑼 

Baseline 
39.58 ± 

0.12 

27.27 ± 

0.13 

14.98 ± 

0.08 

21.52 ± 

0.09 

28.03 ± 

0.13 

17.45 ± 

0.09 

Change 

Detection 

125.10 ± 

0.27 

97.70 ± 

0.27 

145.37 ± 

0.23 

111.37 ± 

0.22 

83.40 ± 

0.22 

132.14 ± 

0.20 

Forgetting 
178.59 ± 

0.33 

149.76 ± 

0.36 

259.34 ± 

0.27 

176.49 ± 

0.32 

147.17 ± 

0.35 

260.00 ± 

0.27 

𝒎𝒋 
Baseline 0.66 0.62 0.68 0.68 0.63 0.68 

Change 

Detection 
0.67 0.67 0.67 0.67 0.67 0.67 

𝝀 Forgetting 0.97 0.97 0.95 0.97 0.97 0.95 

 

[0.5, 1.0) first in 0.05 increments, then in 0.01 increments around the ideal value).  These 

ideal settings are also provided in Table 5.1. 

From Table 5.1, we first observe that in all network and phenomena types, both of 

our solutions significantly outperformed the baseline approach in terms of the number of 

phenomena values for which the team formed correct beliefs (𝑁800).  This is because, due 

to the Institutional Memory Problem (c.f., Section 5.3.2-5.3.3), agents using the baseline 

approach only quickly converged to the first value of the phenomenon (𝑇𝑟𝑢𝑒), then 
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maintained that belief regardless of new information received.  As a result, the teams 

using the baseline approach only formed correct beliefs about half of the phenomenon 

values (since half were equal to the initial value). On the other hand, both of our solutions 

successfully adapted their beliefs over time after the phenomenon changed values, 

enabling the teams to achieve many more correct collective beliefs (as evidenced by 

higher 𝑁800 values, close to the maximum = 10), as well as superior numbers of 

individually correct (𝐶) and incorrect (𝐼) agents.  Therefore, both of our solutions are 

improvements over the previously successful LTIS approaches when considered in 

environments with non-stationary phenomena. 

Comparing our two solutions with one another, we observe that for the periodic 

sequence–the one with equally lengthy amounts of time for each phenomenon value–both 

of our solutions were equally successful in forming correct beliefs as a team (𝑁800) for all 

10 phenomenon values.  However, for the random sequences that contained several 

phenomenon values with shorter durations, the forgetting-based solution significantly 

outperformed the change detection and response algorithm.  We suspect this is due to the 

agents' ability to adapt to changes independently by time-decaying beliefs without having 

to wait for a neighbor to signal a change.  That is, it appears that the ideal forgetting rate 

allowed the agents to move towards uncertainty faster after a phenomenon changed 

values, indicated by a greater average number of unconfident agents (𝑈), thereby 

overcoming inertia faster. The forgetting-based solution also typically achieved a much 

greater number of agents with correct beliefs (𝐶), indicating that not only did the teams 

using the forgetting solution hold more correct beliefs collectively as a team (𝑁800), but 

also more individual agents were also correct. 
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However, the performance of the forgetting-based solution was highly dependent 

on the particular 𝜆 value used.  In particular, we observed a sharp decline in performance 

when 𝜆 was below its optimal value, quickly falling to 𝑁800 values near 0 (caused by 

almost only unconfident agents) with decreases in 𝜆 of only 0.04.  Thus, although our 

forgetting solution outperformed our change detection and response solution, it requires 

more fine-tuning (both 𝜆 and the weight to place in new information 𝑚𝑗, which was 

simply set to the theoretical best 0.63 (Glinton, Scerri, & Sycara, 2010) in these 

experiments).  Therefore, the forgetting solution would require more consideration if 

deployed to real-world applications, whereas the change detection and response solution 

requires less foresight.  In the future, we intend to further investigate predictive models to 

determine how to automatically set 𝜆. 

Comparing across network types (RN, SWN, and SFN) in Table 5.1, we observe 

that the network type did not generally impact the performance of any of the approaches 

for either of the phenomenon types.  Thus, our solutions behave equally well in a wide 

range of settings.  Of note: the optimal time decay parameter 𝜆 for our forgetting-based 

solution was slightly lower for SFN, so a small additional amount of fine tuning could be 

necessary based on network structure. 

Robustness against Faulty/Malicious Agents. Next, we compare our solutions' 

performance in the presence of malicious and/or faulty agents propagating incorrect 

information, making it more difficult for the team to converge to correct beliefs.  Figures 

5.4-5.5 present the number of phenomenon values to which the teams correctly 

converged (𝑁800) for the periodic and random phenomenon sequences, respectively.  
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Figure 5.4: Impact of Malicious/Faulty Agents under Periodic Sequences of 

Phenomenon Values  

 

 
Figure 5.5: Impact of Malicious/Faulty Agents under Random Sequences of 

Phenomenon Values 

As expected, the change detection and response algorithm is indeed more 

susceptible to bad information exchanged by malicious and/or faulty agents.  

Unexpectedly, though, the forgetting solution was actually very robust against bad agents 

and information.  Specifically, correct convergence still occurred for many phenomena 

values (𝑁800 > 8) in the RN and SWN networks as the number of bad agents approached 

50.  This is significant because 50 is also the number of agents with sensors inputting 

new information into the system.  Therefore, even as the amount of bad information 
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approached the amount of freshly observed information, the forgetting-based solution 

maintained high performance.  In the future, we intend to explore how robustness is 

related to the amount of newly sensed information input by sensors. 

In contrast to our earlier results (Table 5.1) with no malicious or faulty agents, 

network structure did impact team performance once bad agents were included.  In 

particular, in the SFN case, team performance quickly declined as the number of 

malicious/faulty agents increased.  Recall that in our experiments, bad agents were 

deliberately chosen to be the most connected agents that exhibit the greatest influence on 

the team.  In SFN, these agents have greater connectivity than in the RN and SWN, 

increasing the influence of such malicious/faulty agents and thus degrading team 

performance.  In the future, we intend to study how to improve robustness in the presence 

of such super-connected agents. 

Also unexpectedly, agent performance was not monotonically decreasing as the 

number of faulty and/or malicious agents increased, especially for random phenomena.  

Instead, it appears that small numbers of agents sharing incorrect information are 

actually beneficial to overcoming inertia in the Institutional Memory Problem.  That is, 

occasionally receiving incorrect information seems to cause agents to fail to reach overly 

confident opinions, yielding less confident beliefs and thus less inertia for forming new 

beliefs after a phenomenon changes.  This lower inertia caused by a few bad agents 

enabled the team to converge to team-wide correct beliefs more often for the shorter 

duration phenomenon values in the random sequences, especially with the change 

detection solution that suffered more than forgetting. 
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5.8. Conclusions 

In conclusion, we addressed information sharing in multiagent systems observing 

localized, non-stationary phenomena common to many real-world applications of 

multiagent systems and emerging computational systems where complex environments 

are increasingly under observation.  We first analytically predicted the impact of adding 

non-stationarity to an existing model for information sharing of localized phenomena 

called LTIS.   We discovered the Institutional Memory Problem caused by inertia in the 

agents' beliefs, then developed two novel distributed solutions: (1) a change detection and 

response algorithm for improving information sharing in local neighborhoods, and (2) a 

forgetting-based solution for independent adaptation by individual agents.  Using an 

empirical study considering different types of phenomena value sequences and network 

structures, as well as varying numbers of malicious and/or faulty agents, we evaluated the 

advantages and disadvantages of both types of solutions.  We discovered that our change 

detection and response algorithm yielded improved off-the-shelf performance over prior 

algorithms for stationary phenomena, whereas our forgetting-based solution achieved 

even greater performance and robustness to bad information accidentally or intentionally 

injected into the system by bad agents.   However, our forgetting-based solution requires 

additional parameter tuning (in the 𝜆 belief decay rate) to the specific application. 

In the future, we intend to advance our research by (1) developing analytical 

models describing agent beliefs under non-stationarity and localization, extending the 

prior models of Glinton, Scerri, & Sycara (2010), (2) using these models to develop an 

approach to automatically tune the 𝜆 parameter for our forgetting- based solution, and (3) 

evaluate our approach in  real-world deployments of multiagent information sharing. 
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CHAPTER 6  AD HOC INFORMATION GATHERING 
 

In this chapter, we present additional research on the Information Sharing 

Problem, this time focusing on developing a solution for enabling agents to adapt their 

usage of different sources of information in an important subproblem: ad hoc information 

gathering.  Namely, agents operating in complex (e.g., dynamic, uncertain, partially 

observable) environments must gather information from various sources to inform their 

incomplete knowledge.  Two popular types of sources include: (1) directly sensing the 

environment using the agent's sensors, and (2) sharing information between networked 

agents occupying the same environment. We address agent reasoning for appropriately 

selecting between such types of sources to update agent knowledge over time.  In 

particular, we consider ad hoc environments where agents cannot collaborate in advance 

to predetermine joint solutions for when to share vs. when to sense.  Instead, we propose 

a solution where agents individually learn the benefits of relying on each type of source 

to maximize knowledge improvement.  We empirically evaluate our learning-based 

solution in different environment configurations to demonstrate its advantages over other 

strategies.  This chapter was accepted for publication as a full paper for the AAMAS 

2015 conference (Eck & Soh, 2015) and will be presented in May 2015.   

6.1. Introduction 

One of the most fundamental responsibilities of intelligent agents is 

understanding their complex (e.g., dynamic, uncertain, partially observable) 

environments, which guides agent reasoning, actuation, and goal accomplishment.  Often, 

agents lack complete knowledge of their environment a priori and must update their 
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understanding over time.  These updates are informed by incorporating information 

gathered whilst operating in the environment. Two popular types of sources of 

information include (1) an agent independently sensing its environment, gathering direct 

observations as a result of the agent's actions and sensors, and (2) receiving shared 

information from other agents operating in the same environment (either cooperatively 

for the sake of the system or for individual profit by self-interested agents). 

Depending on the application, these two types of sources might have different 

benefits (e.g., types of information provided, information quantity and quality) and costs 

(e.g., resource and time expenses). Sensing can be performed on demand, gathering 

information as soon as the agent needs, and the agent can do so in a timely fashion 

without taking away from other agents' activities.  Information sharing, on the other hand, 

can propagate information through the entire system potentially faster and with less cost 

(not waiting for each agent to individually sense the same information).  However, 

relying on sharing also means waiting for another agent to possess the desired 

information, and sharing takes time and resources away from other agent activities that 

could instead further the sharing agent's individual goals.  

Because of these differences, agents in applications where both sources coexist 

face an interesting question: when should I use sensing to update my understanding vs. 

when should I request information from other agents and rely on shared information?  

Answering this question leads to a challenging tradeoff between using the two types of 

information sources that when properly balanced could lead to improved agent behavior 

and goal accomplishment (e.g., through lower cumulative cost and higher quality 

knowledge).   
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Traditionally, agents in a shared environment would pre-coordinate when they 

might be willing and able to share information so that each agent could plan appropriately 

to know when to sense vs. when to rely on shared information.  However, in many 

applications, this pre-coordination might not be possible.  Specifically, in ad hoc 

environments where pre-coordination is impossible and agents might not know the 

behaviors or capabilities of their peers in advance (Stone et al., 2010), agents cannot 

determine a priori the value of relying on shared information against the value of sensing 

alone.  This is especially true in many types of ad hoc environments that are also open 

environments, where agents can join and leave the environment over time.  Agent 

openness is especially problematic to information sharing because the availability of 

shared information changes over time and knowledge about the environment disappears 

with departing agents (who knew more than newly joining agents).  Thus, determining 

when to sense vs. when to rely on shared information is especially difficult in ad hoc 

environments.  In this chapter, we study how agents should balance the sensing vs. 

sharing tradeoff in ad hoc environments, henceforth referred to as the ad hoc information 

gathering (AHIG) problem. 

In order to solve the AHIG, we propose a learning-based solution where agents 

individually learn over time how different types of information gathering actions 

(independently sensing vs. requesting shared information) improve their knowledge about 

the environment.  Through learning, agents can find good information gathering 

strategies without relying on pre-coordination in ad hoc environments, instead treating 

other agents as part of the environment affecting the quality of their information 

gathering.  Moreover, learning enables each agent to adapt its behavior as it interacts with 
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different agents, which is valuable in open environments where agents join and leave 

over time.  Thus, through learning, agents can individually adapt their behavior to 

maximize their own knowledge improvement by learning the benefits of using different 

types of information sources without requiring coordination between agents. 

However, because agents are operating in complex environments with incomplete 

information, learning is generally a computationally complex problem: learning in 

partially observable environments is much harder than learning in fully observable 

environments.  To simplify the agents' learning process, we show how the agents' general 

problem of understanding the current state of the complex environment can be 

transformed to a simpler problem of improving agent knowledge over time, in a 

transformation we term the Knowledge State MDP exploiting full observability of 

current measures of agent knowledge as intermediate states for guiding agent decision 

making.  As a result, an agent can learn faster how to gather information in the 

environment to best refine knowledge.  Moreover, this transformation is potentially 

useful in more general information gathering problems (beyond the AHIG). 

To demonstrate the effectiveness of our transformation and learning-based 

solution, we empirically evaluate using different experimental environment 

configurations how well agents learn to select between different information sources over 

time to improve their knowledge.  We discover that our solution outperforms baseline 

approaches maximizing either sensed or shared information, and does so by appropriately 

selecting between different information sources at different times to best refine agent 

knowledge.  Furthermore, our results indicate that learning about how to gather 
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information is most beneficial when information is most scarce (and careful information 

gathering is most necessary).  

6.2. Problem 

The AHIG problem occurs whenever a set of agents observe the same 

environment and can share information but cannot coordinate in advance to determine 

when agents might share or what quality of information they might provide.  This 

includes real world examples such as (1) intelligent ad hoc sensor networks, where agents 

are deployed on wireless sensors that are randomly dropped to monitor an open space, (2) 

robotic search and rescue operations, where different organizations might bring their own 

robots to explore the same disaster area, and (3) ad hoc traffic information networks, 

where intelligent agents on cars communicate with a road infrastructure system as they 

navigate through town to report and understand traffic conditions. 

6.2.1. AHIG Formulation 

We formalize the AHIG problem as follows.  A set of agents 𝐴𝑔 = {𝑖} exist in a 

shared environment and are connected by a bidirectional communication network.  

Because communication costs grow as the network becomes larger, each agent's local 

neighborhood 𝑁(𝑖) is relatively small compared to the size of the entire network.  

Occasionally, due to openness, some agents will leave the network and others will join.  

Thus, we represent the current set of agents at time 𝑡 with 𝐴𝑔𝑡, and likewise for an agent 

𝑖’s neighborhood 𝑁𝑡(𝑖). 
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Also in the shared environment are a finite set of phenomena 𝑃 = {𝑗} that 

represent objects, entities, or properties of the environment that the agents need to 

understand.  Each phenomenon 𝑗 can take states from a finite set 𝑃𝑆𝑗 = {𝑝𝑠}, and the 

current state of each phenomenon in the dynamic environment changes with probability 

𝑐𝑝 each time step.  In AHIG, the agents are tasked with always understanding the current 

state of each phenomenon, which requires forming correct knowledge about each 

phenomenon over time that is refined through gathering information. 

To gather information about a particular phenomenon, agents can perform 

different actions that use different types of sources for information.  In particular, each 

agent can (1) sense each phenomenon directly using its sensors, or the agent can (2) 

request that its neighbors 𝑁𝑡(𝑖) share their beliefs about a phenomenon.  We assume that 

the agent's sensors are noisy and imperfect, returning correct observations about the 

sensed phenomenon's current state with accuracy 𝑎𝑐𝑐 (and an incorrect observation with 

probability 1 − 𝑎𝑐𝑐).  Agents can also perform a third type of action: (3) agents can 

respond to requests from neighbors with a share action communicating the agent's 

uncertain current knowledge about the state of the phenomenon in question.  

The goal of each agent is to form accurate knowledge about each phenomenon, 

representing good knowledge about the current state of the environment, while 

minimizing costs incurred in sensing.  Agents are awarded a reward for each time point 

during which they have relatively certain knowledge about a phenomenon, whereas 

sensing actions and requests for information incur costs to the agent.  To encourage self-

interested agents to collaborate, the agents are also awarded a small reward for sharing 

information with their neighbors, but only when requested (to avoid unnecessarily 
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consuming the communication resources) and when they are confident about the current 

state of the requested phenomenon (to avoid sharing unfruitful information).   Otherwise, 

agents receive a penalty for sharing information. 

To illustrate, consider a search and rescue (S & R) robotics example, where robot 

agents 𝐴𝑔𝑡 explore a damaged building after a natural disaster.  Here, the phenomena 𝑃 

represent different locations where victims might be trapped, and the phenomenon states 

𝑃𝑆𝑗 indicate whether  victims exist at location 𝑗.  A robot 𝑖 can either directly observe the 

environment with a noisy camera sensor (that consumes limited energy), or the agent can 

communicate with nearby robots 𝑁𝑡(𝑖) using line-of-sight communications.   The goal of 

each robot is to determine with certainty whether victims exist in each location so that 

they can be rescued by human first responders, all-the-while minimizing energy and time 

costs. 

Of final note: how agents represent their knowledge about the phenomena in the 

environment, as well as how they choose actions to refine their knowledge are not 

specified in the general AHIG formalization.  Different domains, applications, and 

solutions might require different approaches to these features (knowledge and decision 

making) that are internal to the agent.  Indeed, in real-world ad hoc environments, 

different agents produced by different developers might even use different approaches to 

these features in the same environment.  However, agents must have some shared 

language that is consistent between agents for communicating shared information.  In this 

chapter, we choose the knowledge representation and decision making process as part of 

our solution, described in Section 6.4. 
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6.2.2. Related Work 

The AHIG problem is closely related to several other problems in the multiagent 

systems literature.  First, the Large Team Information Sharing (LTIS) problem (e.g., 

Glinton et al., 2010; 2011; Pryymak et al., 2012, c.f. Section 5.2) also considers a team of 

agents working together to observe at least one phenomenon in the environment, where 

agents both sense the current state of the phenomenon individually, as well as share 

information through the team's network.  Prior research on LTIS has focused primarily on 

producing analytic models for the flow of information through the team of agents 

(Glinton et al., 2010; 2011), as well as developing distributed solutions for adapting 

information flow to achieve accurate, consistent, shared beliefs (Glinton et al., 2010; 

Pryymak et al., 2012).  However, LTIS differs from the AHIG in several key ways.  First, 

in LTIS, the team of agents is constant over time (i.e., there is no agent openness), and 

agents follow a pre-coordinated strategy of when to share information.  Second and most 

importantly, in LTIS agents do not choose between sensing, requesting, or sharing 

information.  Instead, agents with sensors (which might not be all agents in the team) 

always receive observations from their sensors at every time point.  Additionally, agents 

never request information; instead, they automatically share information with their 

neighbors whenever (and only when) they reach new highly certain knowledge about a 

phenomenon.  Thus, LTIS does not consider the tradeoff between relying on different 

types of information as in the AHIG. 

Another closely related problem studied in the multiagent systems literature is 

trust and reputation systems (e.g., Sabater & Sierra, 2002; Sensoy et al., 2013; Teacy et 

al., 2006).  In such systems, agents can also request and share information with one 
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another to provide additional information to refine agent knowledge over time.  The 

primary focus in trust and reputation systems is to determine how to incorporate such 

shared information:  should the sharing agent be highly trusted and should their 

information heavily influence the receiving agent's knowledge, or should an agent be 

cautious when receiving information from another agent with which it has limited 

experience interacting?  Like LTIS, this research does not focus on balancing information 

from other agents with the agent's own sensing, and thus does not solve the AHIG 

problem, but it is complementary in that reasoning about the trustworthiness and 

reputation of neighboring agents as information sources could be used to improve an 

AHIG agent's decision making process (which we intend to pursue as future work).  

Finally, previous research in ad hoc environments has focused on problems such 

as how to lead teams of agents without communication (Agmon et al., 2014; Genter et. al, 

2013), as well as how to learn to interact with a single Markovian agent (Chakraborty & 

Stone, 2013).  Since information sharing inherently requires communication, our research 

differs from the former (although in our work, agents still cannot pre-coordinate how they 

will interact, under the broad definition of ad hoc environments (Stone et. al, 2010)).  

Similar to the latter, we also use reinforcement learning to determine how to interact with 

other agents, although our approach considers an agent working with multiple other 

agents in the environment. 

6.3. POMDP Formulation 

In order to solve the AHIG and gather the necessary information to understand the 

environment, each agent faces a sequential decision making problem of planning a 

sequence of actions to perform that refine its incomplete knowledge while minimizing 
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costs incurred for gathering such information.  In most partially observable environments 

(which includes AHIG since sensing phenomena returns noisy, imperfect observations), 

sequential decision making problems are generally solved by some variant of partially 

observable Markov decision processes (POMDPs) (Kaelbling et al., 1998).    This is 

especially true of applications of single agent control of environment monitoring (e.g., 

(Araya-Lopez et al., 2010; Boutilier, 2002; Doshi and Roy, 2008; Eck & Soh, 2013c; 

Spaan et al., 2010), similar to our S & R robot example), which we extend in this chapter 

to multiagent information gathering in ad hoc environments. 

To setup our solution, in the following we next provide a description of both how 

the AHIG problem could be cast as a POMDP and the problems with this formulation.  

Then, in Section 6.4, we will introduce our Knowledge State MDP transformation of the 

POMDP for sequential decision making for information gathering problems. 

6.3.1. AHIG as a POMDP 

Since the AHIG is a sequential decision making problem in a partially observable 

environment (i.e., phenomenon states are partially observable), casting the AHIG as a 

POMDP is a natural starting point for a potential solution.  In particular, we consider the 

POMDP formulation for the AHIG 〈𝑆, 𝐴, 𝑇, 𝑍, 𝑂, 𝑅, 𝛾, 𝑏0〉 summarized in Table 6.1. 

In this POMDP, the state space 𝑆 contains variables representing different 

information about situations faced by the agent: partially observable 𝑃𝑆𝑗 represent the 

different states each phenomenon can take (e.g., the presence of victims in different 

locations in our S&R example), and fully observable 𝑆𝑅𝑒𝑞 and 𝑆𝑅𝑒𝑐 represent counts per 

phenomenon of how long it has been since the agent last requested that its neighbors 

share information or received a neighbor's request, respectively.  These count variables  
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Table 6.1: POMDP Formulation of AHIG Problem 
POMDP Variable Values AHIG Description 

State Variables  
𝑺 

𝑆𝑅𝑒𝑞 × 𝑆𝑅𝑒𝑐X𝑗∈𝑃𝑃𝑆𝑗 

𝑆𝑅𝑒𝑞 = {0, … , 𝑘}|𝑃| 

𝑆𝑅𝑒𝑐 = {0, … , 𝑘}|𝑃| 

Counts of the number of time steps since the agent last 

requested (𝑆𝑅𝑒𝑞) or received a request for information 

(𝑆𝑅𝑒𝑐), up to a maximum count 𝑘, and the partially 

observable phenomenon states (𝑃𝑆𝑗) 

Actions  
𝑨 

⋃ {𝑆𝑒𝑛𝑠𝑒𝑗 , 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑗 , 𝑆ℎ𝑎𝑟𝑒𝑗}
𝑗∈𝑃

 Actions (1) sensing a particular phenomenon 𝑗, (2) 

requesting information from neighbors about 

phenomenon 𝑗, and (3) sharing information to 

neighbors about phenomenon 𝑗 (for each 𝑗 ∈ 𝑃) 

Observations  
𝒁 

{𝑛𝑢𝑙𝑙} ∪ 𝑃𝑆𝑗  Observations about (1) the phenomenon state of a 

particular phenomenon, or (2) receiving no observation 

at all. 

Transition  

Function 𝑻 

[0, 1] Likelihood of (1) the request counts changing 

(deterministically) and (2) the phenomenon states 

changing (stochastically) after each action 

Observation  

Function 𝑶 

[0, 1] Likelihood of the agent receiving observations about 

partially observable phenomenon states from its 

actions 

Reward Function 

𝑹 

ℝ The rewards received for taking different actions based 

on the current state of the environment and the agent’s 

knowledge. 

Discount Factor 𝜸 (0, 1) A discount factor to use for weighting future, uncertain 

rewards 

Initial Belief State 

𝒃𝟎 

𝑈(0, 1) The probability the agent ascribes to each phenomenon 

state being the correct initial state of each phenomenon 

(a uniform distribution). 

are useful for tracking (1) whether the agent recently requested information, so that it 

doesn't request too frequently and disrupt other agents, and (2) whether a neighbor 

requested information so that the agent knows if it is appropriate to share its own 

knowledge.  Given this 𝑆, the belief state 𝑏 represents the agent's uncertain knowledge 

about each phenomenon's hidden state.  This knowledge is refined using information 𝑍 

collected from actions 𝐴 using Eq. 2.4.  Beliefs start with pure uncertainty (a uniform 

distribution over phenomenon states, e.g., a location is equally likely to contain a victim 

or not). 

Since the environment is dynamic, the transition function 𝑇 encodes the 

probability that phenomena change states at each time point (to a new state with 

probability 𝑐𝑝, else phenomenon states stay the same with probability 1 − 𝑐𝑝, c.f., 

Section 6.2.1) (e.g., whether a previously safe location collapses and traps new victims, 

or trapped victims are rescued).  The fully observable states transition deterministically 
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each time step: the count for each phenomenon 𝑗 in 𝑆𝑅𝑒𝑞 is incremented by one (up to 𝑘) 

unless the agent requests new information about 𝑗, and the count for each phenomenon 𝑗 

in 𝑆𝑅𝑒𝑐 is incremented by one (up to 𝑘) unless the agent shares information (in which case 

it reverts to 𝑘 to indicate no request from a neighbor is pending). 

The observation function 𝑂, on the other hand, encodes the probability that the 

agent receives information about a particular phenomenon depending on the action taken.  

For 𝑆𝑒𝑛𝑠𝑒𝑗 actions, 𝑂 encodes that the agent observes the correct state with probability 

𝑎𝑐𝑐 (the agents' sensor's accuracy, c.f., Section 6.2.1) and a wrong state with probability 

1 − 𝑎𝑐𝑐 (e.g., whether or not the robot's camera correctly identifies a victim in a room).  

Other actions return a null observation since they do not directly gather information about 

the state of any phenomenon in the environment. 

The reward function 𝑅 encodes (1) the rewards for having high certainty beliefs 

or sharing information when requested, and (2) the costs for information gathering 

actions or penalties for sharing unrequested or uncertain information as described in 

Section 6.2.1.  Maximizing cumulative rewards leads the agent to highly certain 

knowledge (for which it receives a reward) while minimizing costs used to refine its 

knowledge. 

6.3.2. Problems with POMDP Formulation 

However, a few problems exist in this solution formulation.  First, the observation 

set 𝑍 only considers observations from the 𝑆𝑒𝑛𝑠𝑒𝑗 actions and does not handle shared 

information from neighbors, which would occur some delayed amount of time after a 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑗  action.  Although 𝑍 could be modified to include additional variables for 

received information, this limits the types of shared information neighbors can provide to 
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discrete quantifications of the neighbor's beliefs (e.g., the locations most likely to contain 

victims), which loses information about the neighbor's uncertainty (e.g., the probabilities 

of victims in each location).  Otherwise, the observation space would be continuous (and 

thus very difficult to work with) if neighbors shared their full belief states. 

Second, even if 𝑍 were extended to include shared information, there is no way 

for the observation function in a single agent POMDP to encode a probability that a 

neighbor shares a phenomenon state from its own beliefs (in response to a request) 

without some pre-coordination and agreement between agents.  That is, agents must 

understand the likelihoods that a neighbor both (1) shares a particular piece of 

information (dependent on the neighbor's beliefs that change over time) and (2) any 

information at all (e.g., a robot might be busy and unwilling to share information at the 

current time).  Without this information, an agent cannot calculate the overall probability 

that it receives any particular information from a neighbor at any point in time, necessary 

for updating its beliefs with Eq. 2.4 with shared information, nor plan what information it 

might receive over time.  Therefore, a single agent POMDP formulation of the AHIG will 

not directly work in ad hoc environments. 

Of note, traditional multiagent variants of POMDPs (e.g., DEC-POMDPs, 

Distributed POMDPs, and I-POMDPs (Bernstein et al., 2002; Gmytrasiewicz & Doshi, 

2006; Nair et al., 2005)) provide some methods for handling both of the aforementioned 

problems; however, these types of POMDPs require pre-coordination so are inappropriate 

for ad hoc environments and do not scale well with the number of agents. 

To resolve these problems inherent in a POMDP-based AHIG model, we need to 

add some method to incorporate shared information (which is inherently multiagent in 
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nature) outside of the (single agent) POMDP framework's belief updates.  Then, the agent 

should still make decisions based on its current knowledge, but it also needs a way to 

plan how its beliefs will change to form an action policy. 

6.4. Knowledge State MDP 

In this section, we first describe how we propose to incorporate shared 

information from other agents, building on the aforementioned POMDP formulation.  

Then, we describe a transformation of the POMDP into a MDP that looks at solving the 

AHIG from a metareasoning perspective, decoupled from how the agent refines its 

knowledge when it receives new information.  Finally, we introduce a learning process 

for the MDP that enables an agent to learn how to choose actions to take to refine its 

knowledge in ad hoc environments without requiring pre-coordination about how and 

when other agents will share information. 

6.4.1. Incorporating Shared Information 

For agent knowledge about phenomenon states, we consider probability 

distributions over all possible phenomenon states very similar to belief states described in 

Section 6.3.1.  We reuse notation with 𝑏𝑡(𝑗, 𝑝𝑠) the probability that the agent believes 

phenomenon 𝑗 ∈ 𝑃 is currently 𝑝𝑠 ∈ 𝑃𝑆𝑗.  For 𝑆𝑒𝑛𝑠𝑒𝑗 actions, beliefs update from 𝑏 to 𝑏′ 

after receiving observation 𝑧 about phenomenon 𝑗 using Bayes' rule:     

             𝑏′(𝑗, 𝑝𝑠) =
𝑝𝑟𝑜𝑏

𝜂⁄ [(1 − 𝑐𝑝)𝑏(𝑗, 𝑝𝑠) + ∑ (
𝑐𝑝

|𝑃𝑆𝑗|−1
) 𝑏(𝑗, 𝑝𝑠′)𝑝𝑠′∈𝑃𝑆𝑗

𝑝𝑠′≠𝑝𝑠

]    (6.1) 

where 𝑝𝑟𝑜𝑏 = 𝑎𝑐𝑐 when 𝑧 = 𝑝𝑠, else 𝑝 = 1 − 𝑎𝑐𝑐.  This is equivalent to the belief 

updates performed with Eq. 2.4 using the POMDP formulation described in Section 

2.2.1. 
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With respect to shared information, we assume
23

 that agents share the full 

information about their beliefs: the probabilities ascribed to each phenomenon state for 

the particular phenomenon for which a neighbor sent a request.  Then, the corresponding 

belief update for shared information 𝑏𝑆ℎ is: 

                  𝑏′(𝑗, 𝑝𝑠) =
𝑏(𝑗,𝑝𝑠)∙[𝑤∙𝑏𝑆ℎ𝑎𝑟𝑒𝑑 (𝑗,𝑝𝑠)+(1−𝑤) ∙(1−𝑏𝑆ℎ𝑎𝑟𝑒𝑑 (𝑗,𝑝𝑠))]

∑ 𝑏(𝑗,𝑝𝑠′)∙[𝑤∙𝑏𝑆ℎ𝑎𝑟𝑒𝑑 (𝑗,𝑝𝑠′)+(1−𝑤) ∙(1−𝑏𝑆ℎ𝑎𝑟𝑒𝑑 (𝑗,𝑝𝑠′))]𝑝𝑠′∈𝑃𝑆𝑗

  (6.2)  

where constant weight
24

 𝑤 dampens shared information so that uncertain shared beliefs 

do not cause agents to become certain too quickly from little gathered information. 

Using these two rules, agents can incorporate information from both from (1) 

directly observing a phenomenon with its sensors, and (2) its neighbors sharing their 

knowledge. 

6.4.2. Knowledge State MDP Transformation 

At the core of AHIG, the agent's behavior does not necessarily depend on which 

particular phenomenon state is currently correct for each phenomenon, but instead the 

problem is really about how the agent should choose actions to improve its knowledge 

(noting that actions to improve knowledge could be equivalent for each actual 

phenomenon state).  After all, the agents' goal is to form highly certain knowledge about 

each phenomenon using the information available in the environment.  For instance, in 

our S&R example, a robot will base its information gathering on how certain its 

knowledge is about a location (looking to resolve its uncertainty so that it knows where 

all victims are as quickly as possible), which is internal to the agent and independent of 

                                                           
23

 Other types of information might instead be shared, based on the domain, which we leave to consider as 

future work. 
24

 Such weights are common in the information sharing literature (e.g., Glinton et al., 2010; Pryymak et al., 

2012) and could be learned as in trust and reputation systems to further refine our solution, which we intend 

to explore in the future.  Please see (Glinton et. al, 2010) for a more elaborate discussion of the impact of 

weight 𝑤. 
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whether or not an external unknown location actually contains victims.  The robot isn't 

necessarily responsible for using the refined knowledge for a separate task (that is done 

by human first responders), but the goal of the agent in the AHIG is to develop high 

quality knowledge that could subsequently be used for other purposes, depending on the 

application.  

Given this insight, we transform the above POMDP into what we call the 

Knowledge State MDP—an alternative formulation of the problem directly enabling an 

agent to make decisions of how to gather information based on considering the current 

state of its knowledge, as opposed to the state of the environment (including the states of 

phenomena under observation).  This provides a metareasoning solution enabling the 

agent to choose how to gather information based on reflecting about the quality of its 

knowledge without worrying about the domain-specific contents of that knowledge.  As a 

result, the agent's decision making (at a metareasoning level) is decoupled from its 

knowledge refinement (at a standard reasoning level), as desired. 

The Knowledge State MDP can be mathematically described as a MDP 〈𝑆𝑅𝑒𝑞 ×

𝑆𝑅𝑒𝑐 × 𝐾, 𝐴, 𝑇, 𝑅〉, summarized in Table 6.2.  Here, the partially observable part of the 

state space is replaced with the different knowledge states 𝐾 of the agent's knowledge 

(which are fully observable when reflecting on the agent's knowledge) as it gathers 

information to understand its environment. 𝐾 is combined with the 𝑆𝑅𝑒𝑞 and 𝑆𝑅𝑒𝑐 state 

variables representing counts of time since requests were sent or received, described in 

Section 6.3.1.   

Recall that in the AHIG, the primary concern of the agent is to form highly certain 

beliefs, so the state of agent knowledge should reflect how much certainty exists in the 
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Table 6.2: Knowledge State MDP Formulation 
MDP 

Variable 

Values AHIG Description 

State  

Variables  
𝑺 

𝑆𝑅𝑒𝑞 × 𝑆𝑅𝑒𝑐 × K 

𝑆𝑅𝑒𝑞 = {0, … , 𝑘}|𝑃| 

𝑆𝑅𝑒𝑐 = {0, … , 𝑘}|𝑃| 

𝐾: 𝐻(𝑏, 𝑗) discretized into |𝐾| 
bins 

Counts of the number of time steps since the agent last 

requested information (𝑆𝑅𝑒𝑞) or received a request for 

information (𝑆𝑅𝑒𝑐), up to a maximum count 𝑘, and the agents 

current certainty (𝐾) in the current state of each phenomenon 𝑗 

Actions  
𝑨 

⋃ {𝑆𝑒𝑛𝑠𝑒𝑗 , 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑗 , 𝑆ℎ𝑎𝑟𝑒𝑗}
𝑗∈𝑃

 Actions (1) sensing a particular phenomenon 𝑗, (2) requesting 

information from neighbors about phenomenon 𝑗, and (3) 

sharing information to neighbors about phenomenon 𝑗 (for each 

𝑗 ∈ 𝑃) 

Transition  

Function 𝑻 

𝑇𝑆𝑅𝑒𝑐,,𝑆𝑅𝑒𝑞
∙ 𝑇𝐾 ∈ [0, 1] Likelihood of state changes, as the product of the likelihood of 

request state variable transitions and knowledge state 

transitions 𝑇𝐾. 

Knowledge 

State  

Transition 

Function 𝑻𝑲 

[0, 1] Likelihood of knowledge state changes (i.e., changes in 

certainty) after taking each action 

Reward 

Function 𝑹 

ℝ Rewards received for taking different actions based on the 

agent’s knowledge. 

Discount 

Factor 𝜸 

(0, 1) A discount factor to use for weighting future, uncertain rewards 

agent's knowledge.   Then, the agent can take actions that improve its certainty and result 

in better knowledge states (closer to full certainty).  Given that the knowledge 

representation 𝑏 described in Section 6.4.1 is a probability distribution over possible 

phenomenon states for each phenomenon, an appropriate measure of certainty in each 

phenomenon 𝑗's state (independent of application) is the entropy 𝐻(𝑏, 𝑗) ∈ [0,1] of the 

probability distribution representing its knowledge (Araya-Lopez et al., 2010): 

                              𝐻(𝑏, 𝑗) = 1 +
1

log |𝑃𝑆𝑗|
∑ 𝑏(𝑗, 𝑝𝑠) log 𝑏(𝑗, 𝑝𝑠)𝑝𝑠∈𝑃𝑆𝑗

           (6.3) 

To create a set of finite knowledge states 𝐾 using 𝐻(𝑏, 𝑗) so that the MDP is a 

discrete state MDP, and thus is much more tractable, we suggest discretizing the certainty 

values into equal sized bins so that there exist a desired number of states |𝐾|.  Note that a 

larger |𝐾| creates a finer grained separation between different knowledge states, 

potentially enabling better planning, whereas a smaller |𝐾| make the MDP faster to solve 

(and has implications on the learning process described in Section 6.4.3). 
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Given the rewards in the AHIG described in Section 6.2.1, it is important to note 

that the same reward encoding works for the Knowledge State MDP as well: knowledge 

states identifying high certainty earn a reward, and action-based costs, rewards, and 

penalties stay the same. 

6.4.3. Learning Knowledge State Dynamics 

Now, within the Knowledge State MDP, the key to guiding appropriate action 

selection is the dynamics of how knowledge states change based on each action 𝑎 ∈ 𝐴.  

That is, how actions lead the agent to improve its certainty over time.  This information is 

encoded in the knowledge state transition function 𝑇𝐾.  Unfortunately, due to a lack of 

pre-coordination to determine how and when agents will share information, this function 

is undetermined initially.  However, whereas this was a problem in our suggested 

POMDP-based solution in Section 6.3.1, the transformation into an MDP makes it 

feasible to perform model-based reinforcement learning
25

 (MB-RL) (Kaelbling, Littman, 

& Moore, 1996) to learn this transition function through interactions with the 

environment and other agents (and adjust it over time as agent openness causes the 

environment to change), instead of having to rely on pre-coordination.  

In general, any MB-RL algorithm should be sufficient to learn the knowledge 

state transition function 𝑇𝐾.  For our experimental setup in this chapter, we use a learning 

approach for the transition function similar to recent variants (Hernandez et al., 2014; 

Szita & Szepesvari, 2010) of one of the most popular MB-RL algorithms: R-max 

(Brafman & Tennenholtz, 2002).  In particular, this algorithm uses frequentist counting 

                                                           
25

Although MB-RL algorithms also exist for POMDPs (e.g., Ross et al., 2007), such algorithms have high 

complexity and are not generally applicable in practice for POMDPs of moderate to large state spaces 

(which grows quickly with phenomena 𝑃 and their states 𝑃𝑆𝑗  for Section 6.3.1's POMDP).  
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by maintaining a table counting the number of times 𝑛(𝑠𝑡, 𝑎, 𝑠𝑡+1) that the agent observes 

a transition from state 𝑠𝑡 to 𝑠𝑡+1 after taking action 𝑎, then the algorithm updates the 

transition table to: 

                                                𝑇(𝑠𝑡, 𝑎, 𝑠𝑡+1) =
𝑛(𝑠𝑡,𝑎,𝑠𝑡+1)

𝑛(𝑠𝑡,𝑎)
                                (6.4) 

whenever the total count of observed transitions for a state-action pair 𝑛(𝑠𝑡, 𝑎) =

∑ 𝑛(𝑠𝑡, 𝑎, 𝑠𝑡+1)𝑠𝑡+1∈𝑆  equals a parameter 𝑚, after which the learning counts for the state-

action pair are reset to 0.  A smaller 𝑚 enables faster updates to the transition function, 

whereas a larger 𝑚 ensures more precise updates (by relying on more observed 

transitions before updating).  Of note, smaller |𝐾| are also beneficial here, causing the 

same knowledge state to be encountered more frequently, and thus more frequent 

learning updates.  

Considering the Knowledge State MDP, learning 𝑇𝐾 amounts to learning exactly 

how the certainty in the agent's knowledge changes based on (1) each information 

gathering action, and (2) how long it has been since the agent requested information 

(since this alerts the agent both how timely neighbors respond, as well as whether or not 

they respond at all).  Understanding such changes to agent knowledge is exactly the 

information the agent needs to determine which information gathering actions to perform 

in order to reach highly certain knowledge and achieve its primary goal--actions that are 

more likely to lead to high certainty knowledge states from the current knowledge state 

are actions that most improve the agent's knowledge, as desired. 

This learning process only requires feedback from the agent's knowledge updates 

(using sensed or shared information) to observe exactly which knowledge state (i.e., 

certainty) transitions occur after taking each action.  Thus, the agent can learn over time 
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how its knowledge changes when it senses, as well as when it requests shared 

information (including how long such information takes to arrive), without having to 

know in advance when or how other agents will choose to share information.  Therefore, 

this learning process bypasses the problems of other solutions in ad hoc environments 

without requiring pre-coordination to understand the behaviors of neighboring agents and 

their impact on knowledge refinement.  Moreover, the agent also adapts its understanding 

of knowledge state transition changes over time, which is important for open 

environments where information sharing can become more or less prevalent over time, in 

which case a smaller 𝑚 might be useful for more frequent learning and faster adaptation 

to the changing environment.  

By planning with the reward function 𝑅, the agent plans to reach certainty as fast 

as possible (by maximizing rewards for certain knowledge) while also minimizing costs 

required for gathering information, making the agent both effective and efficient at its 

task.  Thus, our Knowledge State MDP coupled with MB-RL is an appropriate solution 

for the AHIG. 

It is important to note that this Knowledge State MDP transformation is closely 

related to a similar metareasoning framework in the literature: the Observer Effect 

POMDP (Eck & Soh, 2013c), which combines fully observable knowledge states with 

partially observable environment states to guide agents to perform actions that refine 

knowledge over time.  Our solution here differs in that (1) it learns the transitions in 

knowledge over time, as opposed to the domain-specific value of information, and (2) 

extends this type of approach to a multiagent setting where learning enables the agent to 

reason about the affects of other agents on its own knowledge. 
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6.5. Experimental Setup 

To better understand our approach and investigate its performance in different 

AHIG settings, we conducted experiments empirically evaluating how well our 

Knowledge State MDP and MB-RL process guide agent information gathering using 

different information sources, including information sharing, without requiring pre-

coordination.  In particular, we considered a range of network configurations that might 

reflect different types of environments and applications.  

That is, we varied the average neighborhood size 𝑁𝑡(𝑖), where larger 

neighborhoods made shared information more prevalent, whereas smaller neighborhoods 

represent more communication-constrained environments (e.g., our S&R robot example 

where only a few robots might be within line-of-sight of one another). The networks were 

randomly generated using an Erdos-Renyi model (Erdos and Renyi, 1960).  Since the 

environment was ad hoc, agents knew nothing about their neighbors in advance. 

Moreover, we made the environment open, where a predetermined percentage (10%) of 

the agents left periodically (every 100 time steps) and new agents joined.  This agent 

openness also reduced the availability of information over time, making information 

sharing more or less valuable at different points in time.   Within a neighborhood (and 

throughout the set of agents), agents differed in their capabilities:  different agents had 

different sensing accuracies, making them better or worse at quickly gathering good 

information from the environment to share with their neighbors upon request.  This 

follows in the tradition of other ad hoc environments (e.g., Chakraborty & Stone, 2013; 

Stone et al., 2010), where agents must work with agents with different capabilities than 

themselves. 
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The different opponents in our experiments included: (1) KSMDP+MB-RL: our 

Knowledge State MDP solution with MB-RL, using the UCT algorithm (Kocsis & 

Szepesvari, 2006) to plan each time step using the learned MDP, (2) KSMDP: our 

Knowledge State MDP solution without MB-RL (also using UCT for planning, but only 

using the initial, uninformed 𝑇𝐾  function where knowledge states only transition to the 

closest states), and two baselines: (3) AlwaysSense: where agents maximized sensing for 

information gathering and did not plan for information sharing since pre-coordination 

was not possible (which serves as a lower bound on acceptable agent performance), and 

(4) RequestThenSense: where agents requested information about each phenomenon 

every 𝑘 steps to maximize information sharing, then either sensing the rest of the time to 

further inform agent knowledge or sharing if the agent had certain knowledge to help its 

neighbors.   

We evaluated agent performance using three measures averaged per time step: (1) 

average belief certainty across all agents, (2) average proportion of agents with correct, 

highly certain knowledge, and (3) average total rewards earned by all agents.  Each agent 

earned rewards: +10 whenever its 𝑏 was sufficiently certain (i.e., 𝐻(𝑏) ≥ 0.8), -1 for 

every 𝑆𝑒𝑛𝑠𝑒𝑗 action, -1 for each 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑗 action (or -5 if 𝑆𝑅𝑒𝑞
𝑗

< 𝑘), and +1 for each 

𝑆ℎ𝑎𝑟𝑒𝑗 action (whenever 𝑆𝑅𝑒𝑐
𝑗

< 𝑘, else -5).  The other parameters were set: |𝐴𝑔| = 100 

(which is too large for multiagent POMDP solutions as a baseline), average 𝑁𝑡(𝑖) ∈

{2,4,6,8,10}, |𝑃| = 1, |𝑃𝑆𝑗| = 3, 𝑐𝑝 = 1%, 𝑎𝑐𝑐~(0.5,0.8), 𝛾 = 0.99, 𝑘 = 6, |𝐾| = 100.  

Each configuration repeated 50 times for 1000 time steps. 
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6.6. Results 

We begin our results analysis by considering the agent's average belief certainty, 

presented in Figure 6.1.  From these results, we first observe that our Knowledge State 

MDP solution with and without MB-RL (respectively KSMDP+MB-RL, KSMDP) 

achieved higher amounts of belief certainty than either of the baselines. This implies that, 

instead of trying to maximize either type of information gathering, our KSMDP 

formulation enabled agents to appropriately select between information gathering actions 

using different sources to best refine their knowledge, as opposed to either (1) requesting 

shared information as often as possible (RequestThenSense), or (2) independently relying 

only on sensed information (AlwaysSense). 

Comparing across average neighborhood sizes, we observe that as neighborhood 

size increased and information became more available through sharing (due to each agent 

being connected to more potential information sources), the average certainty of the 

agents increased.  Most notably, certainty increased fastest for our KSMDP solutions, 

implying that they became better at controlling information gathering as information 

became more readily available (although they also achieved the best performances when 

the neighborhoods were smallest and information was most limited). 

Further comparing between the two variants of our solution, we note that although 

adding MB-RL did not improve belief certainty very much, it did so at a 0.05 statistically 

significant level for the smaller average neighborhood sizes (2-6).  This was when 

information was least available (due to fewer neighbors as sources) and thus more care 

was necessary during information gathering. Therefore, adding MB-RL to our Knowledge 

State MDP was most beneficial when information gathering was most challenging.  
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Figure 6.1: Average Belief Certainty 

Note: in all figures, 95% CIs are too small to display 

 

 

 

 

 
Figure 6.2: Average Proportion of Correct Agents 
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Next, we consider the average proportion of agents holding correct and highly 

certain beliefs, presented in Figure 6.2.  Maximizing this performance measure was the 

desired emergent behavior of solving the AHIG.  From these results, we additionally 

observe that not only did our Knowledge State MDP-based solutions (KSMDP+MB-RL 

and KSMDP) lead to more certainty in the agents' beliefs, but those beliefs were also 

correct.  Thus, agents were gathering the right information to understand their 

environments over time.  Additionally, we again find evidence of the benefits of using 

MB-RL to learn how agent knowledge changes based on different information gathering 

actions using different sources: the improvement over KSMDP (without MB-RL) for 

KSMDP+MB-RL was more pronounced when information was most constrained (i.e., at 

lowest neighborhood sizes). 

Interestingly, we also observe that for the largest neighborhood size (10) 

considered in our experiments, our KSMDP solutions actually achieved very few correct 

agents compared to the baselines, which is in sharp contrast to the other neighborhood 

sizes.  Upon further inspection, what happened is the agents fell victim to institutional 

memory: they converged to highly certain beliefs (as indicated in Figure 6.1) because of 

the prevalence of shared information (favoring requesting information over continually 

sensing the environment).  This caused the agents to become stuck with outdated beliefs 

that didn't adapt as the phenomenon changed over time since very few agents continued 

sensing the phenomenon directly.  In the future, we intend to explore how we can adapt 

our solution to learn to avoid this problem. 

Finally, we consider the average total rewards earned by all agents per time step, 

presented in Figure 6.3.  We observe that for all but the lowest neighborhood sizes, our 
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Figure 6.3: Average Total Reward 

KSMDP approaches--that directly maximized rewards to plan information gathering 

actions—earned the highest cumulative rewards due to achieving high certainty while 

trying to minimize costs.  Of note, for the lowest neighborhood sizes (2-4) when 

information was most scarce, the KSMDP approaches were willing to accept more 

information gathering cost in order to achieve higher certainty and correctness, as 

displayed in Figures 6.1-6.2, ultimately attaining the agents' primary goal. 

6.7. Conclusions 

In summary, we introduced the ad hoc information gathering (AHIG) problem 

occurring when agents must balance relying on different types of information sources 

(knowing when to sense vs. when to rely on shared information from other agents) in 

order to understand their complex environment without pre-coordinating with one 

another.  From the tradition of using POMDPs to guide agent decision making, we 

proposed a transformation called the Knowledge State MDP that enables agents to 
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control information gathering by reflecting on (fully observable) changes to their 

knowledge.  To address the inability of agents to pre-coordinate in ad hoc environments, 

we added a MB-RL process to the Knowledge State MDP that enables agents to learn 

how their knowledge changes when relying on different information sources.  This 

includes learning how and when neighbors might be willing to share information to 

supplement an agent's own sensing of the environment.  Using an experimental study, we 

investigated the performance of our Knowledge State MDP (with and without MB-RL) in 

a range of environment configurations (with varying number of information sources), and 

discovered: (1) our solution gathered better information and earned greater rewards than 

baseline strategies of trying to maximize the usefulness of either type of information 

source (sensing vs. shared information), and (2) adding MB-RL enabled agents to best 

guided their behavior when information availability was most limited (and high quality 

information gathering was most necessary). 

In the future, we intend to: (1) combine our solution with trust and reputation 

systems to further learn not only when to rely on different information sources, but how 

much weight to place in received information, which could help overcome the 

institutional memory problem (where weight 𝑤 could be adapted to avoid agents rapidly 

converging to certain beliefs when shared information is prevalent), and (2) study how to 

use the Knowledge State MDP to balance information gathering about different 

phenomena in the environment to avoid imbalanced knowledge potentially caused by 

favoring sources for one phenomenon over the others. 
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CHAPTER 7   CONCLUSIONS AND FUTURE WORK 
 

In this chapter, we conclude by summarizing the research presented in this 

dissertation, as well as describing the future research we intend to pursue in continuation 

of our overall research vision for reflective, deliberative information gathering.  We 

summarize our research again in the context of the two problems addressed under this 

dissertation in Figure 7.1. 

 

Figure 7.1: Summary of Research 

7.1. Summary 

In Chapter 1, we introduced our greater research vision of reflective, deliberative 

information gathering as a means for improving an agent’s understanding of its 

environment in order to improve both the agent’s decision making and subsequent task 

and goal accomplishment.  We defined two core problems addressed in this dissertation: 

the Analysis Problem and the Information Sharing Problem, then outlined our five 
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solutions.  Finally, we summarized the key contributions this dissertation (summarized 

again in Section 7.3 later in this chapter). 

In Chapter 2, we provided a high level overview of prior research from the 

literature related to our umbrella concept of reflective, deliberative information gathering 

for intelligent agents and multiagent systems.  In particular, we summarized past research 

introducing the notion of deliberative information gathering, where agents make 

intentional decisions to control their sensing to refine their knowledge.  We especially 

focused on the use of the active sensing POMDP, related to our solutions in Chapters 3, 

4, and 6, for deliberative information gathering.  Then, we described prior research on 

metareasoning and reflection to improve information gathering.  Next, we summarized 

related research on information sharing in complex environments, especially those with 

resource constraints affecting the ability of agents to share information.   Finally, we 

described how the research presented in this dissertation (and our prior research on 

reflective, deliberative information gathering) both fit within and extend the state-of-the-

art in agent-based information gathering. 

In Chapter 3, we presented our first solution to the Analysis problem: potential-

based reward shaping for POMDPs.  This approach has three key benefits.  First, PBRS 

for POMDPs embeds additional measures reflecting action benefits and costs (including 

with respect to sensing) in reward optimization by agents to produce agent behavior that 

best addresses the tradeoff between benefits and costs to improve overall agent behavior. 

Second, the approach also generalizes to a solution for improving agent planning in 

devices with constrained computational resources (e.g., wireless sensors, robots) by 

guiding the agent towards large rewards beyond the myopic planning (i.e., limited 
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number of planning steps) caused by a lack of computational power.  Finally, our solution 

also represents a novel technique for adding metareasoning to agent reasoning with 

POMDPs without increasing the size of the agent’s state space (and thus does not 

increase the computational complexity of the reasoning process).  Our experimental 

results demonstrated that PBRS best improves agent planning in large, complex 

environments, whereas state-of-the-art heuristic and Monte Carlo search approaches 

performed similarly (or slightly better) in smaller and/or less complex environments. 

In Chapter 4, we presented our second solution to the Analysis problem: 

situationally-aware online POMDP planning using Difference-based Heuristic Selection 

(DHS) and the Long Sequence Entropy Minimization (LSEM) heuristic.  This solution 

improves information gathering in highly uncertain environments to promote more 

efficient and effective planning with limited time constraints.  In this solution, the LSEM 

heuristic reflects on the expected certainty in agent knowledge in order to guide agent’s 

planning so that the agent quickly gathers the necessary information to operate in highly 

uncertain environments. DHS, on the other hand, enables the agent to select between 

different heuristics measuring different types of information to decide how to plan based 

on its most pressing need: reducing knowledge uncertainty vs. maximizing rewards. Our 

results demonstrated that DHS with LSEM can find successful policies in highly 

uncertain environments two orders of magnitude faster than the best previously reported 

heuristic search online POMDP planning algorithms, whereas existing state-of-the-art 

heuristic and Monte Carlo search approaches performed similarly well (or slightly better) 

in environments with less uncertainty. 
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In Chapter 5, we moved to the Information Sharing Problem and considered 

information sharing about non-stationary environment phenomena between large teams 

of cooperative agents where only a few agents can directly observe the phenomena of 

interest.  This limitation on sensing results in a challenging problem caused by 

environment non-stationarity: the institutional memory problem where large portions of 

the team of agents become stuck with outdated beliefs as the environment changes, no 

matter how much additional information enters the team through additional sensing.  We 

presented two solutions for mitigating this problem: (1) a change detection and response 

algorithm where agents work together within local sub-teams to quickly detect changes to 

the observed phenomenon, and (2) a forgetting-based algorithm, where agents 

independently use belief decay to maintain up-to-date beliefs to avoid problems caused 

by faulty agents or malicious information.  Our experimental results demonstrated that 

both solutions successfully avoid the institutional memory problem and lead to 

consistent, accurate beliefs through the team as the environment changes, extending past 

solutions (that work well in stationary environments) to guide information sharing in non-

stationary environments. 

Finally, in Chapter 6, we studied another subproblem of the Information Sharing 

Problem: ad hoc information gathering where agents can share information with peers to 

augment their information gathering (in addition to sensing the environment directly), but 

agents have no advance knowledge of their peers’ capabilities or willingness to 

cooperate.  As a result of this lack of a priori knowledge about peers, agents cannot pre-

coordinate their sharing behavior (as we assume for the solutions presented in Chapter 5), 

but instead agents must learn to work together over time.  We presented a solution called 
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the Knowledge State MDP where agents individually learn the benefits of relying on each 

type of source to maximize knowledge improvement.  Our experimental results 

demonstrated that our approach results in higher belief certainty and more accurate 

beliefs than baseline strategies. 

7.2. Future Work 

In the future, we plan to continue our research on reflective, deliberative 

information gathering in several ways.  At the end of each of our solution chapters 

(Chapters 3-6), we outlined specific ways we intend to advance our research presented in 

each chapter.  Here, we consider broader opportunities and challenges we intend to 

address. 

Specifically, we envision two primary avenues for future research: (1) applying 

reflective, deliberative information gathering to real-world applications of intelligent 

agents and multiagent systems, and (2) extending reflective, deliberative information 

gathering as a methodology for developing methods for autonomous data analytics in 

“big data” and “data science” solutions. 

First, throughout our research on reflective, deliberative information gathering, 

we have studied information gathering from a fundamental perspective using theoretical 

analyses and empirical studies using popular benchmarks and simulations.  We now want 

to move towards studying reflective, deliberative information gathering in real-world 

applications of intelligent agents and multiagent systems.  For example, we are currently 

working on developing intelligent agents capable of interacting with human users to 

gather information about their preferences, opinions, and knowledge through intelligently 

adapting self-administered surveys or computer-assisted interviews (Al Baghal et al., 
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2013; Ruther et al., 2013; Atkin et al., 2014; Eck et al., 2014; Arunachalam et al., 2015; 

Atkin et al., 2015; Eck, Soh, & McCutcheon, 2015; Wettlaufer et al., 2015).  Because 

respondents might become bored or frustrated with such surveys or interviews, one of the 

agent’s tasks is to manage the progress of the survey or interview to predict potential 

problems with data collection (e.g., respondents skipping questions, providing false 

information to quickly finish the survey or interview, or quitting data collection 

altogether), then adapt the questions being asked of the respondent in order to avoid such 

problems from occurring or mitigating their impacts on data collection.  This applied 

research is part of on ongoing grant from the NSF (SES-1228937) in partnership with the 

U.S. Census Bureau and Gallup and will result in better information gathering tools for 

working with human respondents.  We are also interested in applying reflective, 

deliberative information gathering to other real-world domains, such as search and rescue 

robotics (as used as a motivating example throughout this dissertation), social network 

analysis, game playing (e.g., Eck & Soh, 2012a) and computer-supported, collaborative 

learning systems (e.g., Khandaker et al., 2011; Eck, Soh, & Brassil, 2013). 

Second, reflective, deliberative information gathering is also closely related to 

designing autonomous agents capable of performing automated, intelligent “big data” 

analytics—enabling reasoning about combining the right data from the right sources at 

the right time to enable agents (and humans working with such agents) to make the right 

decisions to solve problems in real-time.  We intend to further extend our research to 

develop agents capable of (1) assisting domain experts in their data analyses, (2) 

performing autonomous analyses (both individually and in agent teams) to discover 

interesting, novel patterns from data for use by human data consumers, and (3) train 



www.manaraa.com

 
 

234 

novices how to perform data analytics using a wide array of computational methods.  

This work also extends our prior design of adaptive knowledge assistants (Eck & Soh, 

2012b). 

7.3. Contributions 

We conclude this dissertation by re-emphasizing its key contributions.  

Specifically, we have provided: 

1. A better fundamental understanding of agent-based sensing in complex 

environments, valuable for a wide range of intelligent agents and 

multiagent systems domains.  This knowledge can be applied to improve 

agent reasoning and actuation in different applications, as well as 

improves our overall understanding of general artificial intelligence. 

2. A set of solutions to provide reflective, deliberative information gathering 

to improve agent-based sensing, including single-agent POMDP solutions 

and cooperative agent team-based solutions. 

3. New techniques for metareasoning by intelligent agents with broader 

impacts beyond sensing control. 

4. Implemented simulation environments mimicking real-world scenarios 

and applications for studying agent-based sensing. 

5. The addition of implementations of many of our solutions to a Java library 

for artificial intelligence that can be reused for other AI and agent-based 

projects. 
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